TY - JOUR
T1 - Resistive switching properties of cr-doped srzro3 thin film on si substrate
AU - Yang, Min Kyu
AU - Ko, Tae Kuk
AU - Park, Jae Wan
AU - Lee, Jeon Kook
PY - 2010
Y1 - 2010
N2 - Abstract One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped SrZrO3 perovskite thin films were deposited on a SrRuO3 bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the SrZrO3:Cr perovskite and the SrRuO3 bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than 102. A pulse test showed the switching behavior of the Pt/SrZrO3:Cr/SrRuO3 device under a pulse of 10 kHz for 102 cycles. The resistive switching memory devices made of the Cr-doped SrZrO3 thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.
AB - Abstract One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped SrZrO3 perovskite thin films were deposited on a SrRuO3 bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the SrZrO3:Cr perovskite and the SrRuO3 bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than 102. A pulse test showed the switching behavior of the Pt/SrZrO3:Cr/SrRuO3 device under a pulse of 10 kHz for 102 cycles. The resistive switching memory devices made of the Cr-doped SrZrO3 thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.
UR - http://www.scopus.com/inward/record.url?scp=84884569764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884569764&partnerID=8YFLogxK
U2 - 10.3740/MRSK.2010.20.5.241
DO - 10.3740/MRSK.2010.20.5.241
M3 - Article
AN - SCOPUS:84884569764
SN - 1225-0562
VL - 20
SP - 241
EP - 245
JO - Korean Journal of Materials Research
JF - Korean Journal of Materials Research
IS - 5
ER -