Restoration of regulatory B cell deficiency following alemtuzumab therapy in patients with relapsing multiple sclerosis

Yeseul Kim, Gayoung Kim, Hyun June Shin, Jae Won Hyun, Su Hyun Kim, Eunjig Lee, Ho Jin Kim

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Background: Regulatory B cells (Bregs), which protect from autoimmunity, are deficient in multiple sclerosis (MS). Novel regulatory B cell subsets CD19+CD24hiCD38hi cells and CD19+PD-L1hi cells, with disparate regulatory mechanisms have been defined. Alemtuzumab provides a long-lasting suppression of disease activity in MS. In contrast to its documented efficacy, alemtuzumab's mechanism of action is not fully understood and information about the composition of repopulating B cell pool is scarce. Aim: To characterize repopulated B cell subsets and elucidate alemtuzumab's mechanism of action in B cell perspective. Methods: The frequency and the absolute number of Bregs were studied in peripheral blood mononuclear cells (PBMC) of 37 MS patients and 11 healthy controls (HC). Longitudinal analysis of the frequency and the absolute number of Bregs in PBMC of 11 MS patients was evaluated, before and at 6, 9, and 12 months post alemtuzumab. Results: We found deficiency of CD19+CD24hiCD38hi cells during relapse compared to remission and HC (relapse vs remission: p = 0.0006, relapse vs HC: p = 0.0004). CD19+PD-L1hi cells were deficient during relapse than remission and HC (relapse vs remission: p = 0.0113, relapse vs HC: p = 0.0007). Following alemtuzumab, the distribution of B cells shifts towards naïve phenotype and Breg deficiency is restored. The frequency of CD19+CD24hiCD38hi cells was significantly increased at 6 M and 9 M compared to 0 M (6 M vs 0 M: p = 0.0004, 9 M vs 0 M: p = 0.0079). At 9 M, the frequency of CD19+CD24hiCD38hi cells started to decrease and by 12 M the frequency was reduced compared to 6 M, although it was significantly higher than baseline level (12 M vs 0 M: p = 0.0257). The absolute number was significantly increased at 6 M and 9 M post-alemtuzumab (6 M vs 0 M: p = 0.0063, 9 M vs 0 M: p = 0.02). The frequency of CD19+PD-L1hi cells significantly increased until 12 M (6 M vs 0 M: p = 0.0004, 12 M vs 0 M: p = 0.0036). The frequency of CD19+PD-L1hi cells at 12 M was significantly higher than 9 M (p = 0.0311). We further pinpoint that CD19+CD24hiCD38hi cells were deficient at severe relapses following alemtuzumab infusion and restored during recovery. Conclusions: Our results highlight the preferential reconstitution of Bregs as a possible mechanism of action of alemtuzumab and CD19+CD24hiCD38hi cells as a potential biomarker for disease activity.

Original languageEnglish
Article number300
JournalJournal of Neuroinflammation
Issue number1
Publication statusPublished - 2018 Oct 30

Bibliographical note

Funding Information:
This study was supported by the Bio & Medical Technology Development Program (NRF-M3A9B6069339) and the Advanced Research Center Program (NRF-2018R1A5A2023127) of the National Research Foundation funded by the Ministry of Science & ICT.

Funding Information:
Kim YS, Kim GY, Hyun JW, Kim SH, and Shin HJ report no conflicts of interest. Kim HJ has lectured, consulted, and received honoraria from Bayer Schering Pharma, Biogen, Celltrion, Eisai, Genzyme, HanAll BioPharma, MedImmune, Merck Serono, Novartis, Teva-Handok, and UCB; received a grant from National Research Foundation of the Ministry of Science and ICT; and accepted research funding from Genzyme, Merck Serono, Teva-Handok, and UCB; serves on a steering committee for MedImmune; is a co-editor for the Multiple Sclerosis Journal—Experimental, Translational, and Clinical, and an associated editor for the Journal of Clinical Neurology.

Publisher Copyright:
© 2018 The Author(s).

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Restoration of regulatory B cell deficiency following alemtuzumab therapy in patients with relapsing multiple sclerosis'. Together they form a unique fingerprint.

Cite this