Robust optimization for identical parallel machine scheduling with uncertain processing time

Kwang Kyu Seo, Byung Do Chung

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


In this paper, we propose to apply robust optimization approaches to the problem of identical parallel machine scheduling with processing time uncertainty. Box uncertainty and cardinality-constrained uncertainty are considered, and robust counterpart is reformulated as deterministic MILP problems. We explore the impact of the protection level, and show the trade-off between robustness and conservativeness. The results of numerical experiments demonstrate that the robust counterpart with cardinality-constrained uncertainty outperforms that with box uncertainty with respect to the mean and standard deviation of realized objective values. However, the robust counterpart with box uncertainty has an advantage in that it requires less computational efforts to solve the problem.

Original languageEnglish
Article numberjamdsm0015
JournalJournal of Advanced Mechanical Design, Systems and Manufacturing
Issue number2
Publication statusPublished - 2014

Bibliographical note

Funding Information:
This paper was supported by Faculty Research Fund, Sungkyunkwan University, 2013.

Publisher Copyright:
© 2014 The Japan Society of Mechanical Engineers.

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Robust optimization for identical parallel machine scheduling with uncertain processing time'. Together they form a unique fingerprint.

Cite this