TY - JOUR
T1 - Robust performance of deep learning for automatic detection and segmentation of brain metastases using three-dimensional black-blood and three-dimensional gradient echo imaging
AU - Park, Yae Won
AU - Jun, Yohan
AU - Lee, Yangho
AU - Han, Kyunghwa
AU - An, Chansik
AU - Ahn, Sung Soo
AU - Hwang, Dosik
AU - Lee, Seung Koo
N1 - Publisher Copyright:
© 2021, European Society of Radiology.
PY - 2021/9
Y1 - 2021/9
N2 - Objectives: To evaluate whether a deep learning (DL) model using both three-dimensional (3D) black-blood (BB) imaging and 3D gradient echo (GRE) imaging may improve the detection and segmentation performance of brain metastases compared to that using only 3D GRE imaging. Methods: A total of 188 patients with brain metastases (917 lesions) who underwent a brain metastasis MRI protocol including contrast-enhanced 3D BB and 3D GRE were included in the training set. DL models based on 3D U-net were constructed. The models were validated in the test set consisting of 45 patients with brain metastases (203 lesions) and 49 patients without brain metastases. Results: The combined 3D BB and 3D GRE model yielded better performance than the 3D GRE model (sensitivities of 93.1% vs 76.8%, p < 0.001), and this effect was significantly stronger in subgroups with small metastases (p interaction < 0.001). For metastases < 3 mm, ≥ 3 mm and < 10 mm, and ≥ 10 mm, the sensitivities were 82.4%, 93.2%, and 100%, respectively. The combined 3D BB and 3D GRE model showed a false-positive per case of 0.59 in the test set. The combined 3D BB and 3D GRE model showed a Dice coefficient of 0.822, while 3D GRE model showed a lower Dice coefficient of 0.756. Conclusions: The combined 3D BB and 3D GRE DL model may improve the detection and segmentation performance of brain metastases, especially in detecting small metastases. Key Points: • The combined 3D BB and 3D GRE model yielded better performance for the detection of brain metastases than the 3D GRE model (p < 0.001), with sensitivities of 93.1% and 76.8%, respectively. • The combined 3D BB and 3D GRE model showed a false-positive rate per case of 0.59 in the test set. • The combined 3D BB and 3D GRE model showed a Dice coefficient of 0.822, while the 3D GRE model showed a lower Dice coefficient of 0.756.
AB - Objectives: To evaluate whether a deep learning (DL) model using both three-dimensional (3D) black-blood (BB) imaging and 3D gradient echo (GRE) imaging may improve the detection and segmentation performance of brain metastases compared to that using only 3D GRE imaging. Methods: A total of 188 patients with brain metastases (917 lesions) who underwent a brain metastasis MRI protocol including contrast-enhanced 3D BB and 3D GRE were included in the training set. DL models based on 3D U-net were constructed. The models were validated in the test set consisting of 45 patients with brain metastases (203 lesions) and 49 patients without brain metastases. Results: The combined 3D BB and 3D GRE model yielded better performance than the 3D GRE model (sensitivities of 93.1% vs 76.8%, p < 0.001), and this effect was significantly stronger in subgroups with small metastases (p interaction < 0.001). For metastases < 3 mm, ≥ 3 mm and < 10 mm, and ≥ 10 mm, the sensitivities were 82.4%, 93.2%, and 100%, respectively. The combined 3D BB and 3D GRE model showed a false-positive per case of 0.59 in the test set. The combined 3D BB and 3D GRE model showed a Dice coefficient of 0.822, while 3D GRE model showed a lower Dice coefficient of 0.756. Conclusions: The combined 3D BB and 3D GRE DL model may improve the detection and segmentation performance of brain metastases, especially in detecting small metastases. Key Points: • The combined 3D BB and 3D GRE model yielded better performance for the detection of brain metastases than the 3D GRE model (p < 0.001), with sensitivities of 93.1% and 76.8%, respectively. • The combined 3D BB and 3D GRE model showed a false-positive rate per case of 0.59 in the test set. • The combined 3D BB and 3D GRE model showed a Dice coefficient of 0.822, while the 3D GRE model showed a lower Dice coefficient of 0.756.
UR - http://www.scopus.com/inward/record.url?scp=85103052538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103052538&partnerID=8YFLogxK
U2 - 10.1007/s00330-021-07783-3
DO - 10.1007/s00330-021-07783-3
M3 - Article
C2 - 33738598
AN - SCOPUS:85103052538
VL - 31
SP - 6686
EP - 6695
JO - European Radiology
JF - European Radiology
SN - 0938-7994
IS - 9
ER -