Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux

Xiangde Lin, Jiwoong Heo, Hyejoong Jeong, Moonhyun Choi, Minwook Chang, Jinkee Hong

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Much progress has been made toward applying super-wetting membranes to various oil-water separation processes with high molecular permeation flux. However, there are still numerous challenges in the simple preparation of extremely durable membranes with super-wetting properties, especially considering the great developments in high-flux membranes with nanometer-scale thickness. Previous membranes have been usually limited to either high durability with low selectivity or enhanced separation performance with low stability. Herein, an extremely robust carbon nanofiber-polydimethylsiloxane (CNFs-PDMS) network inlay-gated stainless steel mesh (SSM) that shows superhydrophobic and superoleophilic properties is presented. Carbon nanofibers are subtly deposited into SSM pores to form network fillers via an improved vacuum-based filtration. Most importantly, the SSM/CNFs-PDMS membrane exhibits excellent resistance to harsh environmental conditions such as acid, salt, organic, biofouling, and mechanical abrasion. In particular, mechanical damage to the inserted membrane can be avoided using the protective SSM, thereby ensuring super-wetting performance. In the present work, we propose a new concept of discrete or partial superhydrophobicity. Moreover, compared to previous superhydrophobic membranes, the thickness is significantly decreased, leading to enhanced oil-in-water emulsion separation flux. The membranes exhibit a gravity-driven water-in-oil emulsion separation with flux up to 2970 L m−2 h−1. This work provides a brand new route for designing durable and high-flux separation systems with an inlay-gated structure in the future by combining ultrathin membranes with protective supports.

Original languageEnglish
Pages (from-to)17970-17980
Number of pages11
JournalJournal of Materials Chemistry A
Volume4
Issue number46
DOIs
Publication statusPublished - 2016 Jan 1

Fingerprint

Carbon nanofibers
Emulsions
Oils
Fluxes
Membranes
Water
Stainless Steel
Stainless steel
Wetting
Polydimethylsiloxane
Biofouling
Abrasion
Permeation
Fillers
Gravitation
Durability
Salts
Vacuum
Acids

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Cite this

Lin, Xiangde ; Heo, Jiwoong ; Jeong, Hyejoong ; Choi, Moonhyun ; Chang, Minwook ; Hong, Jinkee. / Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux. In: Journal of Materials Chemistry A. 2016 ; Vol. 4, No. 46. pp. 17970-17980.
@article{bd035f939c0a438c9cd6c6ab6edaeb6b,
title = "Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux",
abstract = "Much progress has been made toward applying super-wetting membranes to various oil-water separation processes with high molecular permeation flux. However, there are still numerous challenges in the simple preparation of extremely durable membranes with super-wetting properties, especially considering the great developments in high-flux membranes with nanometer-scale thickness. Previous membranes have been usually limited to either high durability with low selectivity or enhanced separation performance with low stability. Herein, an extremely robust carbon nanofiber-polydimethylsiloxane (CNFs-PDMS) network inlay-gated stainless steel mesh (SSM) that shows superhydrophobic and superoleophilic properties is presented. Carbon nanofibers are subtly deposited into SSM pores to form network fillers via an improved vacuum-based filtration. Most importantly, the SSM/CNFs-PDMS membrane exhibits excellent resistance to harsh environmental conditions such as acid, salt, organic, biofouling, and mechanical abrasion. In particular, mechanical damage to the inserted membrane can be avoided using the protective SSM, thereby ensuring super-wetting performance. In the present work, we propose a new concept of discrete or partial superhydrophobicity. Moreover, compared to previous superhydrophobic membranes, the thickness is significantly decreased, leading to enhanced oil-in-water emulsion separation flux. The membranes exhibit a gravity-driven water-in-oil emulsion separation with flux up to 2970 L m−2 h−1. This work provides a brand new route for designing durable and high-flux separation systems with an inlay-gated structure in the future by combining ultrathin membranes with protective supports.",
author = "Xiangde Lin and Jiwoong Heo and Hyejoong Jeong and Moonhyun Choi and Minwook Chang and Jinkee Hong",
year = "2016",
month = "1",
day = "1",
doi = "10.1039/c6ta07578a",
language = "English",
volume = "4",
pages = "17970--17980",
journal = "Journal of Materials Chemistry A",
issn = "2050-7488",
publisher = "Royal Society of Chemistry",
number = "46",

}

Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux. / Lin, Xiangde; Heo, Jiwoong; Jeong, Hyejoong; Choi, Moonhyun; Chang, Minwook; Hong, Jinkee.

In: Journal of Materials Chemistry A, Vol. 4, No. 46, 01.01.2016, p. 17970-17980.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux

AU - Lin, Xiangde

AU - Heo, Jiwoong

AU - Jeong, Hyejoong

AU - Choi, Moonhyun

AU - Chang, Minwook

AU - Hong, Jinkee

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Much progress has been made toward applying super-wetting membranes to various oil-water separation processes with high molecular permeation flux. However, there are still numerous challenges in the simple preparation of extremely durable membranes with super-wetting properties, especially considering the great developments in high-flux membranes with nanometer-scale thickness. Previous membranes have been usually limited to either high durability with low selectivity or enhanced separation performance with low stability. Herein, an extremely robust carbon nanofiber-polydimethylsiloxane (CNFs-PDMS) network inlay-gated stainless steel mesh (SSM) that shows superhydrophobic and superoleophilic properties is presented. Carbon nanofibers are subtly deposited into SSM pores to form network fillers via an improved vacuum-based filtration. Most importantly, the SSM/CNFs-PDMS membrane exhibits excellent resistance to harsh environmental conditions such as acid, salt, organic, biofouling, and mechanical abrasion. In particular, mechanical damage to the inserted membrane can be avoided using the protective SSM, thereby ensuring super-wetting performance. In the present work, we propose a new concept of discrete or partial superhydrophobicity. Moreover, compared to previous superhydrophobic membranes, the thickness is significantly decreased, leading to enhanced oil-in-water emulsion separation flux. The membranes exhibit a gravity-driven water-in-oil emulsion separation with flux up to 2970 L m−2 h−1. This work provides a brand new route for designing durable and high-flux separation systems with an inlay-gated structure in the future by combining ultrathin membranes with protective supports.

AB - Much progress has been made toward applying super-wetting membranes to various oil-water separation processes with high molecular permeation flux. However, there are still numerous challenges in the simple preparation of extremely durable membranes with super-wetting properties, especially considering the great developments in high-flux membranes with nanometer-scale thickness. Previous membranes have been usually limited to either high durability with low selectivity or enhanced separation performance with low stability. Herein, an extremely robust carbon nanofiber-polydimethylsiloxane (CNFs-PDMS) network inlay-gated stainless steel mesh (SSM) that shows superhydrophobic and superoleophilic properties is presented. Carbon nanofibers are subtly deposited into SSM pores to form network fillers via an improved vacuum-based filtration. Most importantly, the SSM/CNFs-PDMS membrane exhibits excellent resistance to harsh environmental conditions such as acid, salt, organic, biofouling, and mechanical abrasion. In particular, mechanical damage to the inserted membrane can be avoided using the protective SSM, thereby ensuring super-wetting performance. In the present work, we propose a new concept of discrete or partial superhydrophobicity. Moreover, compared to previous superhydrophobic membranes, the thickness is significantly decreased, leading to enhanced oil-in-water emulsion separation flux. The membranes exhibit a gravity-driven water-in-oil emulsion separation with flux up to 2970 L m−2 h−1. This work provides a brand new route for designing durable and high-flux separation systems with an inlay-gated structure in the future by combining ultrathin membranes with protective supports.

UR - http://www.scopus.com/inward/record.url?scp=84997755110&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84997755110&partnerID=8YFLogxK

U2 - 10.1039/c6ta07578a

DO - 10.1039/c6ta07578a

M3 - Article

AN - SCOPUS:84997755110

VL - 4

SP - 17970

EP - 17980

JO - Journal of Materials Chemistry A

JF - Journal of Materials Chemistry A

SN - 2050-7488

IS - 46

ER -