SAM-Net: LiDAR Depth Inpainting for 3D Static Map Generation

Junhyeop Lee, Sangwon Hwang, Woo Jin Kim, Sangyoun Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Various sensors can be attached and added to autonomous vehicles, included visual cameras, radar, LiDAR (Light Detection And Ranging), and GNSS (Global Navigation Satellite System). These sensors have been studied in many research areas, in particular studies on building precise 3D maps. It is essential for autonomous driving to create an accurate 3D map of the surrounding scene. However, creating an accurate static 3D map is difficult due to changes in moving objects or dynamic environments. Spurious objects on the 3D map can be handled by removing or ignoring them for 3D mapping. Following this idea, we propose an object segmentation and inpainting network. The proposed network called SAM-Net, addresses the object duplication issue by segmenting the objects and inpainting them with the segmentation results. Conventional inpainting research has dealt with RGB images. No matter how well such approaches reconstruct holes or corrupted images, they do not establish 3D points' relationship with the point cloud frame. Therefore, we suggest a depth inpainting method for outdoor object segmentation and inpainting tasks that utilizes a high-precision depth range sensor (Velodyne HDL-64E), which is not suggested before. Unfortunately, no dataset exists for the outdoor depth inpainting task. Thus, to train our model, we generate a new dataset by locating objects on a clean static background. Moreover, our proposed method shows outstanding depth performance compared to the previous visual inpainting method. Our dataset will be available at: 'https://github.com/JunhyeopLee/lidar_inpainting'.

Original languageEnglish
Pages (from-to)12213-12228
Number of pages16
JournalIEEE Transactions on Intelligent Transportation Systems
Volume23
Issue number8
DOIs
Publication statusPublished - 2022 Aug 1

Bibliographical note

Publisher Copyright:
© 2000-2011 IEEE.

All Science Journal Classification (ASJC) codes

  • Automotive Engineering
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'SAM-Net: LiDAR Depth Inpainting for 3D Static Map Generation'. Together they form a unique fingerprint.

Cite this