Schottky-Barrier-Controllable Graphene Electrode to Boost Rectification in Organic Vertical P–N Junction Photodiodes

Jong Su Kim, Young Jin Choi, Hwi Je Woo, Jeehye Yang, Young Jae Song, Moon Sung Kang, Jeong Ho Cho

Research output: Contribution to journalArticle

12 Citations (Scopus)


Monolayer graphene is used as an electrode to develop novel electronic device architectures that exploit the unique, atomically thin structure of the material with a low density of states at its charge neutrality point. For example, a single semiconductor layer stacked onto graphene can provide a semiconductor–electrode junction with a tunable injection barrier, which is the basis for a primitive transistor architecture known as the Schottky barrier field-effect transistor. This work demonstrates the next level of complexity in a vertical graphene–semiconductor architecture. Specifically, an organic vertical p-n junction (p-type pentacene/n-type N,N′-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8)) on top of a graphene electrode constituting a novel gate-tunable photodiode device structure is fabricated. The model device confirms that controlling the Schottky barrier height at the pentacene–graphene junction can (i) suppress the dark current density and (ii) enhance the photocurrent of the device, both of which are critical to improve the performance of a photodiode.

Original languageEnglish
Article number1704475
JournalAdvanced Functional Materials
Issue number48
Publication statusPublished - 2017 Dec 22


All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Cite this