Abstract
Authenticated broadcast, enabling a base station to send commands and requests to low-powered sensor nodes in an authentic manner, is one of the core challenges for securing wireless sensor networks. \muTESLA and its multilevel variants based on delayed exposure of one-way chains are well known valuable broadcast authentication schemes, but concerns still remain for their practical application. To use these schemes on resource-limited sensor nodes, a 64-bit key chain is desirable for efficiency, but care must be taken. We will first show, by both theoretical analysis and rigorous experiments on real sensor nodes, that if \muTESLA is implemented in a raw form with 64-bit key chains, some of the future keys can be discovered through time-memory-data-tradeoff techniques. We will then present an extendable broadcast authentication scheme called X-TESLA, as a new member of the TESLA family, to remedy the fact that previous schemes do not consider problems arising from sleep modes, network failures, idle sessions, as well as the time-memory-data tradeoff risk, and to reduce their high cost of countering DoS attacks. In X-TESLA, two levels of chains that have distinct intervals and cross-authenticate each other are used. This allows the short key chains to continue indefinitely and makes new interesting strategies and management methods possible, significantly reducing unnecessary computation and buffer occupation, and leads to efficient solutions to the raised problems.
Original language | English |
---|---|
Article number | 5313804 |
Pages (from-to) | 1120-1133 |
Number of pages | 14 |
Journal | IEEE Transactions on Computers |
Volume | 59 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2010 |
Bibliographical note
Funding Information:The authors thank Virgil Gligor, Adrian Perrig, Jung Hee Cheon, JongHyup Lee, and anonymous reviewers for their most helpful comments to improve this paper. This work was supported by National Research Foundation of Korea Grant funded by Korea Government (KRF-2007-314-D00254 and 2009-0077066).
All Science Journal Classification (ASJC) codes
- Software
- Theoretical Computer Science
- Hardware and Architecture
- Computational Theory and Mathematics