Segmentation of planar surfaces from laser scanning data using the magnitude of normal position vector for adaptive neighborhoods

Changjae Kim, Ayman Habib, Muwook Pyeon, Goo Rak Kwon, Jaehoon Jung, Joon Heo

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)

Abstract

Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1_ of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

Original languageEnglish
Article number140
JournalSensors (Switzerland)
Volume16
Issue number2
DOIs
Publication statusPublished - 2016 Jan 22

Bibliographical note

Publisher Copyright:
© 2016 by the authors; licensee MDPI, Basel, Switzerland.

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Segmentation of planar surfaces from laser scanning data using the magnitude of normal position vector for adaptive neighborhoods'. Together they form a unique fingerprint.

Cite this