Selective Photomechanical Detachment and Retrieval of Divided Sister Cells from Enclosed Microfluidics for Downstream Analyses

Yu Chih Chen, Hyoung Won Baac, Kyu Tae Lee, Shamileh Fouladdel, Kendall Teichert, Jong G. Ok, Yu Heng Cheng, Patrick N. Ingram, A. John Hart, Ebrahim Azizi, L. Jay Guo, Max S. Wicha, Euisik Yoon

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Considerable evidence suggests that self-renewal and differentiation of cancer stem-like cells, a key cell population in tumorgenesis, can determine the outcome of disease. Though the development of microfluidics has enhanced the study of cellular lineage, it remains challenging to retrieve sister cells separately inside enclosed microfluidics for further analyses. In this work, we developed a photomechanical method to selectively detach and reliably retrieve target cells from enclosed microfluidic chambers. Cells cultured on carbon nanotube-polydimethylsiloxane composite surfaces can be detached using shear force induced through irradiation of a nanosecond-pulsed laser. This retrieval process has been verified to preserve cell viability, membrane proteins, and mRNA expression levels. Using the presented method, we have successfully performed 96-plex single-cell transcriptome analysis on sister cells in order to identify the genes altered during self-renewal and differentiation, demonstrating phenomenal resolution in the study of cellular lineage.

Original languageEnglish
Pages (from-to)4660-4668
Number of pages9
JournalACS Nano
Issue number5
Publication statusPublished - 2017 May 23

Bibliographical note

Funding Information:
This work was supported in part by the Department of Defense (W81XWH-12-1-0325) and in part by the National Institutes of Health (1R21CA17585701, 1R21CA19501601A1). Y.-C.C. acknowledges the support from Forbes Institute for Cancer Discovery. H.W.B. acknowledges the support from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2014R1A1A2059612) and also from the Technology Innovation Program (No. 10052749) funded by the Ministry of Trade, Industry, and Energy of Korea.

Publisher Copyright:
© 2017 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Selective Photomechanical Detachment and Retrieval of Divided Sister Cells from Enclosed Microfluidics for Downstream Analyses'. Together they form a unique fingerprint.

Cite this