Abstract
Millions of families around the world remain vulnerable to water scarcity and have no access to drinking water. Advanced oxidation processes (AOPs) are an effective way towards water purification with qualified reactive oxygen species (ROSs) while are impeded by the high-cost and tedious process in either input of consumable reagent, production of ROSs, and the pre-treatment of supporting electrolyte. Herein, we couple solar light-assisted H2O2 production from water and photo-Fenton-like reactions into a self-cyclable system by using an artificial leaf, achieving an unassisted H2O2 production rate of 0.77 μmol/(min·cm2) under 1 Sun AM 1.5 illumination. Furthermore, a large (70 cm2) artificial leaf was used for an unassisted solar-driven bicarbonate-activated hydrogen peroxide (BAP) system with recycled catalysts for real-time wastewater purification with requirements for only water, oxygen and sunlight. This demonstration highlights the feasibility and scalability of photoelectrochemical technology for decentralized environmental governance applications from laboratory benchtops to industry.
Original language | English |
---|---|
Article number | 4982 |
Journal | Nature communications |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 Dec |
Bibliographical note
Funding Information:This work was supported by NSFC (22172077, 21902104) and the International Cooperation Program (BZ2020063) of Jiangsu Province, the Natural Science Foundation of Jiangsu Province of China (BK 20211573), the Fundamental Research Funds for the Central Universities (30921011216). This research was also supported by the Yonsei Signature Research Cluster Program of 2021 (2021-22-0002). J.H. Park acknowledges the support from NRF Korea (2019R1A2C3010479, 2021M3H4A1A03049662, 2022H1D3A3A01077254, 2022R1A4A200823).
Publisher Copyright:
© 2022, The Author(s).
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- General
- Physics and Astronomy(all)