Separation performance of PEBAX/PEI hollow fiber composite membrane for SO2/CO2/N2 mixed gas

Kee Hong Kim, Pravin G. Ingole, Jong Hak Kim, Hyung Keun Lee

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

In this study, a poly(ether-b-amide) (PEBAX)/polyetherimide (PEI) composite hollow fiber membrane was prepared by a continuous coating process to remove SO2 from mixed gases. The SO2 in the emission gas affected the sorbents in the CO2 capture and separation (CCS) process. The composite membrane used in the present study was characterized by Fourier transform infrared spectroscopy (FT-IR), and the morphology was examined by scanning electron microscopy (SEM) to understand and correlate the morphology with the performance of membrane. The effects of the parameters involved in the spinning of PEI hollow fiber and PEBAX layer deposition on the permeation of the resulting composite membranes were also investigated. The PEBAX/PEI composite hollow fiber membranes showed an increase in the operating pressure; the permeance of SO2 and CO2 increased, but the permeance of N2 was negligibly changed. The permeance of SO2 sharply decreased and the selectivity of SO2/CO2 decreased as the temperature difference increased. In addition, hollow fiber membrane processes were designed using a simulation program to estimate the membrane area as a function of the operating conditions (pressure, temperature, stage cut) with the intent to maximize the SO2 removal efficiency. The resultant optimization decreased 50-60% of the membrane area by increasing the operating pressure and temperature.

Original languageEnglish
Pages (from-to)242-250
Number of pages9
JournalChemical Engineering Journal
Volume233
DOIs
Publication statusPublished - 2013 Nov 1

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Separation performance of PEBAX/PEI hollow fiber composite membrane for SO<sub>2</sub>/CO<sub>2</sub>/N<sub>2</sub> mixed gas'. Together they form a unique fingerprint.

  • Cite this