Sequential Bayesian prediction and adaptive sampling algorithms for mobile sensor networks

Yunfei Xu, Jongeun Choi, Sarat Dass, Tapabrata Maiti

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

In this technical note, we formulate a fully Bayesian approach for spatio-temporal Gaussian process regression such that multifactorial effects of observations, measurement noise and prior distributions are all correctly incorporated in the predictive distribution. Using discrete prior probabilities and compactly supported kernels, we provide a way to design sequential Bayesian prediction algorithms in which exact predictive distributions can be computed in constant time as the number of observations increases. For a special case, a distributed implementation of sequential Bayesian prediction algorithms has been proposed for mobile sensor networks. An adaptive sampling strategy for mobile sensors, using the maximum a posteriori (MAP) estimation, has been proposed to minimize the prediction error variances. Simulation results illustrate the practical usefulness of the proposed theoretically-correct algorithms.

Original languageEnglish
Article number6099560
Pages (from-to)2078-2084
Number of pages7
JournalIEEE Transactions on Automatic Control
Volume57
Issue number8
DOIs
Publication statusPublished - 2012 Aug 8

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Sequential Bayesian prediction and adaptive sampling algorithms for mobile sensor networks'. Together they form a unique fingerprint.

  • Cite this