Abstract
While perovskite solar cells (PSCs) have emerged as promising low-cost solar power generators, most reported high-performance PSCs employ electron transport layers (ETLs, mainly TiO2) treated at high temperatures (≥450 °C), which may eventually hinder the development of flexible PSCs. Meanwhile, the development of low-temperature processed PSCs (L-PSCs) possessing performance levels comparable to those of high-temperature processed PSCs has actively been reported. In this study, L-PSCs with improved long-term stability and negligible hysteresis were developed through the effective passivation of shallow and deep traps in organic-inorganic hybrid perovskite (OIHP) crystals and at the ETL/OIHP interface. L-PSCs with alkaline chloride modification achieved state-of-the-art performance among reported L-PSCs (power conversion efficiency (PCE) = 22.6%) with a long-term shelf life. The origin of long-term stability and the efficient passivation of deep traps was revealed by monitoring the trap-state distribution. Moreover, the high PCE of a large-area device (21.3%, 1.12 cm2) was also demonstrated, confirming the uniformity of the modification.
Original language | English |
---|---|
Pages (from-to) | 1396-1403 |
Number of pages | 8 |
Journal | ACS Energy Letters |
Volume | 5 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2020 May 8 |
Bibliographical note
Funding Information:The authors gratefully acknowledge support from the National Research Foundation (NRF) Grant funded by the Korean Government (MSIP, Grant Nos. 2016R1A5A1012966, 2017M2A2A6A01020854, and 2019R1A2C2087218) and the Basic Science Research Fund (1.190119.01) of Ulsan National Institute of Science & Technology (UNIST).
Publisher Copyright:
Copyright © 2020 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Chemistry (miscellaneous)
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Materials Chemistry