Abstract
This paper deals with the problem of shape-based retrieval in time-series databases. The shape-based retrieval is defined as the operation that searchers for the (sub)sequences whose shapes are similar to that of a given query sequence. In this paper, we propose an effective an efficient approach for shape-based retrieval of subsequences. We first introduce a new similarity model for shape-based retrieval that supports various combinations of transformations such as shifting, scaling, moving average, and time warping. For efficient processing of the shape-based retrieval, we also propose the indexing and query processing methods. To verify the superiority of our approach, we perform extensive experiments with the real-world S&P 500 stock data. The results reveal that our approach successfully finds all the subsequences that have the shapes similar to that of the query sequence, and also achieves significant speedup over the sequential scan method.
Original language | English |
---|---|
Pages | 438-445 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 2002 |
Event | Applied Computing 2002: Proceeedings of the 2002 ACM Symposium on Applied Computing - Madrid, Spain Duration: 2002 Mar 11 → 2002 Mar 14 |
Other
Other | Applied Computing 2002: Proceeedings of the 2002 ACM Symposium on Applied Computing |
---|---|
Country/Territory | Spain |
City | Madrid |
Period | 02/3/11 → 02/3/14 |
All Science Journal Classification (ASJC) codes
- Software