Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates

Jinhoon Kim, Jaeyoon Park, Unyong Jeong, Jin Woo Park

Research output: Contribution to journalArticle

28 Citations (Scopus)


Highly stretchable transparent conductors where Ag nanowire networks (AgNWs) are reliably embedded into a polydimethylsiloxane (PDMS) substrate are presented. In spite of the weak physical and chemical interaction between Ag nanowires and PDMS, a significantly high transfer efficiency and uniform embedding of AgNW percolation mesh electrodes into PDMS was achieved by simply coating aerogels onto the AgNWs and using water-assisted transfer. By the failure-free transfer and reliable bonding with the substrate, the conductive PDMS with embedded AgNWs that exhibits a sheet resistance (Rs) of 15 Ω/sq and 80% optical transmittance (T) are reported here. The PDMS films accommodate tensile strains up to 70% and a cyclic strain of 25% for more than 100 cycles, with subsequent Rs values as low as 90 and 27 Ω/sq, respectively. The T of this conductive PDMS is more than 25% higher than that of networks of CNTs, Cu nanowires, and hybrid composites of CNTs and graphene embedded in elastomer films such as PDMS, polyurethane, and Ecoflex. The simple and reproducible fabrication allows the extensive study and optimization of the stretchability of the meanders in terms of humidity, thickness, and substrate. The results provide new insights for designing stretchable electronics.

Original languageEnglish
Article number43830
JournalJournal of Applied Polymer Science
Issue number33
Publication statusPublished - 2016 Sep 5

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates'. Together they form a unique fingerprint.

  • Cite this