Abstract
Transport properties of about 3 nm channel length monolayer MoX2 (X = S, Se, Te) n-channel metal-oxide-semiconductor field effect transistors (MOSFETs) are examined through ballistic full-band quantum transport simulations with atomistic tight-binding Hamiltonians. Our simulations reveal that single gate (SG) monolayer MoX2 MOSFETs with an approximately 2 nm gate underlap exhibit reasonable subthreshold characteristics. From these full-band simulations, we observe channel orientation dependent negative differential resistance (NDR) in the out characteristics in the ballistic transport regime. We discuss and compare NDR properties of monolayer MoX2 n-channel MOSFETs in different transport directions.
Original language | English |
---|---|
Article number | 145101 |
Journal | Journal of Physics D: Applied Physics |
Volume | 48 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2015 Apr 15 |
Bibliographical note
Publisher Copyright:© 2015 IOP Publishing Ltd.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films