Simulation of shock/boundary-layer interactions with bleed using immersed-boundary methods

Santanu Ghosh, Jung Il Choi, Jack R. Edwards

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

This work uses an immersed-boundary method to simulate the effects of arrays of discrete bleed holes in controlling shock-wave/turbulent-boundary- layer interactions. Both Reynolds-averaged Navier-Stokes and hybrid large-eddy/Reynolds-averaged Navier-Stokes turbulence closures are used with the immersed-boundary technique. The approach is validated by conducting simulations of Mach 2.5 flow over a perforated plate containing 18 individual bleed holes. Computed values of discharge coefficient as a function of bleed plenum pressure are compared to experimental data. Simulations of an impinging-oblique-shock/boundary-layer interaction at Mach 2.45 with and without bleed control are also performed. For the studies with bleed, two different bleed rates are employed. The 68 hole bleed plate is rendered as an immersed object in the computational domain. Wall pressure predictions show that, in general, the large-eddy/Reynolds-averaged Navier-Stokes technique underestimates the upstream extent of axial separation that occurs in the absence of bleed. Good agreement with pitot pressure surveys throughout the interaction region is obtained, however. Flow control at the maximum-bleed rate completely removes the separation region and induces local disturbances in the wall pressure distributions that are associated with the expansion of the boundary-layer fluid into the bleed port and its subsequent recompression. Computed pitot pressure distributions are in good agreement with experiment for the cases with bleed. Swirl-strength probability density distributions are used to estimate the evolution of turbulent length scales throughout the interaction. These, along with Reynolds-stress predictions, indicate that an effect of strong bleed rates is to accelerate the recovery of the boundary layer toward a new equilibrium state downstream of the interaction region.

Original languageEnglish
Pages (from-to)203-214
Number of pages12
JournalJournal of Propulsion and Power
Volume26
Issue number2
DOIs
Publication statusPublished - 2010 Mar 1

Fingerprint

boundary layers
Boundary layers
boundary layer
shock
wall pressure
Pressure distribution
Mach number
simulation
pressure distribution
interactions
Perforated plates
eddy
discharge coefficient
perforated plates
vortices
turbulent boundary layer
Flow control
Shock waves
flow control
Reynolds stress

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Fuel Technology
  • Mechanical Engineering
  • Space and Planetary Science

Cite this

@article{0edd60c0fae2483387ed448f0e044883,
title = "Simulation of shock/boundary-layer interactions with bleed using immersed-boundary methods",
abstract = "This work uses an immersed-boundary method to simulate the effects of arrays of discrete bleed holes in controlling shock-wave/turbulent-boundary- layer interactions. Both Reynolds-averaged Navier-Stokes and hybrid large-eddy/Reynolds-averaged Navier-Stokes turbulence closures are used with the immersed-boundary technique. The approach is validated by conducting simulations of Mach 2.5 flow over a perforated plate containing 18 individual bleed holes. Computed values of discharge coefficient as a function of bleed plenum pressure are compared to experimental data. Simulations of an impinging-oblique-shock/boundary-layer interaction at Mach 2.45 with and without bleed control are also performed. For the studies with bleed, two different bleed rates are employed. The 68 hole bleed plate is rendered as an immersed object in the computational domain. Wall pressure predictions show that, in general, the large-eddy/Reynolds-averaged Navier-Stokes technique underestimates the upstream extent of axial separation that occurs in the absence of bleed. Good agreement with pitot pressure surveys throughout the interaction region is obtained, however. Flow control at the maximum-bleed rate completely removes the separation region and induces local disturbances in the wall pressure distributions that are associated with the expansion of the boundary-layer fluid into the bleed port and its subsequent recompression. Computed pitot pressure distributions are in good agreement with experiment for the cases with bleed. Swirl-strength probability density distributions are used to estimate the evolution of turbulent length scales throughout the interaction. These, along with Reynolds-stress predictions, indicate that an effect of strong bleed rates is to accelerate the recovery of the boundary layer toward a new equilibrium state downstream of the interaction region.",
author = "Santanu Ghosh and Choi, {Jung Il} and Edwards, {Jack R.}",
year = "2010",
month = "3",
day = "1",
doi = "10.2514/1.45297",
language = "English",
volume = "26",
pages = "203--214",
journal = "Journal of Propulsion and Power",
issn = "0748-4658",
publisher = "American Institute of Aeronautics and Astronautics Inc. (AIAA)",
number = "2",

}

Simulation of shock/boundary-layer interactions with bleed using immersed-boundary methods. / Ghosh, Santanu; Choi, Jung Il; Edwards, Jack R.

In: Journal of Propulsion and Power, Vol. 26, No. 2, 01.03.2010, p. 203-214.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Simulation of shock/boundary-layer interactions with bleed using immersed-boundary methods

AU - Ghosh, Santanu

AU - Choi, Jung Il

AU - Edwards, Jack R.

PY - 2010/3/1

Y1 - 2010/3/1

N2 - This work uses an immersed-boundary method to simulate the effects of arrays of discrete bleed holes in controlling shock-wave/turbulent-boundary- layer interactions. Both Reynolds-averaged Navier-Stokes and hybrid large-eddy/Reynolds-averaged Navier-Stokes turbulence closures are used with the immersed-boundary technique. The approach is validated by conducting simulations of Mach 2.5 flow over a perforated plate containing 18 individual bleed holes. Computed values of discharge coefficient as a function of bleed plenum pressure are compared to experimental data. Simulations of an impinging-oblique-shock/boundary-layer interaction at Mach 2.45 with and without bleed control are also performed. For the studies with bleed, two different bleed rates are employed. The 68 hole bleed plate is rendered as an immersed object in the computational domain. Wall pressure predictions show that, in general, the large-eddy/Reynolds-averaged Navier-Stokes technique underestimates the upstream extent of axial separation that occurs in the absence of bleed. Good agreement with pitot pressure surveys throughout the interaction region is obtained, however. Flow control at the maximum-bleed rate completely removes the separation region and induces local disturbances in the wall pressure distributions that are associated with the expansion of the boundary-layer fluid into the bleed port and its subsequent recompression. Computed pitot pressure distributions are in good agreement with experiment for the cases with bleed. Swirl-strength probability density distributions are used to estimate the evolution of turbulent length scales throughout the interaction. These, along with Reynolds-stress predictions, indicate that an effect of strong bleed rates is to accelerate the recovery of the boundary layer toward a new equilibrium state downstream of the interaction region.

AB - This work uses an immersed-boundary method to simulate the effects of arrays of discrete bleed holes in controlling shock-wave/turbulent-boundary- layer interactions. Both Reynolds-averaged Navier-Stokes and hybrid large-eddy/Reynolds-averaged Navier-Stokes turbulence closures are used with the immersed-boundary technique. The approach is validated by conducting simulations of Mach 2.5 flow over a perforated plate containing 18 individual bleed holes. Computed values of discharge coefficient as a function of bleed plenum pressure are compared to experimental data. Simulations of an impinging-oblique-shock/boundary-layer interaction at Mach 2.45 with and without bleed control are also performed. For the studies with bleed, two different bleed rates are employed. The 68 hole bleed plate is rendered as an immersed object in the computational domain. Wall pressure predictions show that, in general, the large-eddy/Reynolds-averaged Navier-Stokes technique underestimates the upstream extent of axial separation that occurs in the absence of bleed. Good agreement with pitot pressure surveys throughout the interaction region is obtained, however. Flow control at the maximum-bleed rate completely removes the separation region and induces local disturbances in the wall pressure distributions that are associated with the expansion of the boundary-layer fluid into the bleed port and its subsequent recompression. Computed pitot pressure distributions are in good agreement with experiment for the cases with bleed. Swirl-strength probability density distributions are used to estimate the evolution of turbulent length scales throughout the interaction. These, along with Reynolds-stress predictions, indicate that an effect of strong bleed rates is to accelerate the recovery of the boundary layer toward a new equilibrium state downstream of the interaction region.

UR - http://www.scopus.com/inward/record.url?scp=77949650218&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77949650218&partnerID=8YFLogxK

U2 - 10.2514/1.45297

DO - 10.2514/1.45297

M3 - Article

AN - SCOPUS:77949650218

VL - 26

SP - 203

EP - 214

JO - Journal of Propulsion and Power

JF - Journal of Propulsion and Power

SN - 0748-4658

IS - 2

ER -