Abstract
In this study, an analytical method for the simultaneous separation and characterization of various molecular species of lysophospholipids (LPLs) and phospholipids (PLs) is introduced by employing nanoflow liquid chromatography-electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). Since LPLs and PLs in human plasma are potential biomarkers for cancer, development of a sophisticated analytical method for the simultaneous profiling of these molecules is important. Standard species of LPLs and PLs were examined to establish a separation condition using a capillary LC column followed by MS scans and data-dependent collision-induced dissociation (CID) analysis for structural identification. With nLC-ESI-MS/MS, regioisomers of each category of LPLs were completely separated and identified with characteristic CID spectra. It was applied to the comprehensive profiling of LPLs and PLs from a human blood plasma sample and yielded identifications of 50 LPLs (each regioisomer pair of 6 lysophosphatidylcholines (LPCs), 7 lysophosphatidylethanolamines (LPEs), 9 lysophosphatidic acid (LPAs), 2 lysophosphatidylglycerols (LPGs), and 1 lysophosphatidylserine (LPS)) and 62 PLs (19 phosphatidylcholines (PCs), 11 phosphatidylethanolamines (PEs), 3 phosphatidylserines (PSs), 16 phosphatidylinositols (PIs), 8 phosphatidylglycerols (PGs), and 5 phosphatidic acids (PAs)).
Original language | English |
---|---|
Pages (from-to) | 2953-2961 |
Number of pages | 9 |
Journal | Analytical and Bioanalytical Chemistry |
Volume | 400 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2011 Jul |
Bibliographical note
Funding Information:This study was supported by a grant (NRF-2010-0014046) from the National Research Foundation of Korea.
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Biochemistry