Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN =200 GeV

PHENIX Collaboration

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)


The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au+Au collisions at sNN=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au+Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p+p collisions at sNN=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4GeV/c. We use the bottom electron fractions in Au+Au and p+p along with the previously measured heavy flavor electron RAA to calculate the RAA for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3<pT<4GeV/c.

Original languageEnglish
Article number034904
JournalPhysical Review C
Issue number3
Publication statusPublished - 2016 Mar 7

Bibliographical note

Funding Information:
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A.); Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Croatian Science Foundation and Ministry of Science, Education, and Sports (Croatia); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique, Commissariat l'nergie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany); National Science Fund, OTKA, Kroly Robert University College, and the Ch. Simonyi Fund (Hungary); Department of Atomic Energy and Department of Science and Technology (India); Israel Science Foundation (Israel); Basic Science Research Program through NRF of the Ministry of Education (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia); VR and Wallenberg Foundation (Sweden); the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation.

Publisher Copyright:
© 2016 American Physical Society.

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics


Dive into the research topics of 'Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN =200 GeV'. Together they form a unique fingerprint.

Cite this