Smart Energy Bricks: Ti3C2@Polymer Electrochemical Energy Storage inside Bricks by 3D Printing

Jayraj V. Vaghasiya, Carmen C. Mayorga-Martinez, Martin Pumera

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Three-dimensional (3D) printing technology has a pronounced impact on building construction and energy storage devices. Here, the concept of integrating 3D-printed electrochemical devices into insulation voids in construction bricks is demonstrated in order to create electrochemical energy storage as an integral part of home building. The low-cost 3D-printed supercapacitor (SC) electrodes are created using graphene/polylactic acid (PLA) filament in any desired shape such as 3D cylindrical- (3Dcy), disk- (3Ddc), and 3D rectangular- (3Drc) shaped electrodes. To obtain excellent capacitive performance, a Ti3C2@polypyrrole (PPy) hybrid is uniformly electroplated on the surface of 3D-printed electrodes. These Ti3C2@PPy-coated 3D-printed electrodes exhibit outstanding electrical conductivity, capacitive performance, cycle life, and power density. The bricks themselves act as an excellent scaffold for electrochemical energy devices as they are electrically insulating, fire-resistant, and contain substantial unused thermal insulation voids. A 3Drc Ti3C2@PPy SC is integrated into a real brick to showcase a smart house energy storage system that allows to reserve power in the bricks and use it as a power backup source in the event of a power outage in the elevator. This concept provides a platform for future truly smart buildings built from added value “smart brick” energy storage systems.

Original languageEnglish
Article number2106990
JournalAdvanced Functional Materials
Volume31
Issue number48
DOIs
Publication statusPublished - 2021 Nov 25

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR).

Publisher Copyright:
© 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Smart Energy Bricks: Ti3C2@Polymer Electrochemical Energy Storage inside Bricks by 3D Printing'. Together they form a unique fingerprint.

Cite this