Solid-state and vacuum thermionic energy conversion

A. Shakouri, Z. Bian, R. Singh, Y. Zhang, D. Vashaee, T. E. Humphrey, H. Schmidt, J. M. Zide, G. Zeng, J. H. Bahk, A. C. Gossard, J. E. Bowers, V. Rawat, T. D. Sands, Woochul Kim, S. Singer, A. Majumdar, P. M. Mayer, R. J. Ram, K. J. RusselV. Narayanamurti, F. A.M. Koeck, X. Li, J. S. Park, J. R. Smith, G. L. Bilbro, R. F. Davis, Z. Sitar, R. J. Nemanich

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

Original languageEnglish
Title of host publicationMaterials Research Society Symposium Proceedings
Pages245-260
Number of pages16
Publication statusPublished - 2006 May 9
Event2005 Materials Research Society Fall Meeting - Boston, MA, United States
Duration: 2005 Nov 282005 Dec 1

Publication series

NameMaterials Research Society Symposium Proceedings
Volume886
ISSN (Print)0272-9172

Other

Other2005 Materials Research Society Fall Meeting
CountryUnited States
CityBoston, MA
Period05/11/2805/12/1

Fingerprint

thermionics
energy conversion
Energy conversion
Solid state devices
solid state devices
Thermionic emission
Diamond
thermionic emission
Vacuum
solid state
thermionic power generation
Thin films
vacuum
Thermionic power generation
Diamonds
thin films
diamonds
Electron affinity
Carbon Nanotubes
Hot electrons

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

Shakouri, A., Bian, Z., Singh, R., Zhang, Y., Vashaee, D., Humphrey, T. E., ... Nemanich, R. J. (2006). Solid-state and vacuum thermionic energy conversion. In Materials Research Society Symposium Proceedings (pp. 245-260). (Materials Research Society Symposium Proceedings; Vol. 886).
Shakouri, A. ; Bian, Z. ; Singh, R. ; Zhang, Y. ; Vashaee, D. ; Humphrey, T. E. ; Schmidt, H. ; Zide, J. M. ; Zeng, G. ; Bahk, J. H. ; Gossard, A. C. ; Bowers, J. E. ; Rawat, V. ; Sands, T. D. ; Kim, Woochul ; Singer, S. ; Majumdar, A. ; Mayer, P. M. ; Ram, R. J. ; Russel, K. J. ; Narayanamurti, V. ; Koeck, F. A.M. ; Li, X. ; Park, J. S. ; Smith, J. R. ; Bilbro, G. L. ; Davis, R. F. ; Sitar, Z. ; Nemanich, R. J. / Solid-state and vacuum thermionic energy conversion. Materials Research Society Symposium Proceedings. 2006. pp. 245-260 (Materials Research Society Symposium Proceedings).
@inproceedings{30ea4774aaed44f6bc8fbfdab43bfb7d,
title = "Solid-state and vacuum thermionic energy conversion",
abstract = "A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20{\%} efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.",
author = "A. Shakouri and Z. Bian and R. Singh and Y. Zhang and D. Vashaee and Humphrey, {T. E.} and H. Schmidt and Zide, {J. M.} and G. Zeng and Bahk, {J. H.} and Gossard, {A. C.} and Bowers, {J. E.} and V. Rawat and Sands, {T. D.} and Woochul Kim and S. Singer and A. Majumdar and Mayer, {P. M.} and Ram, {R. J.} and Russel, {K. J.} and V. Narayanamurti and Koeck, {F. A.M.} and X. Li and Park, {J. S.} and Smith, {J. R.} and Bilbro, {G. L.} and Davis, {R. F.} and Z. Sitar and Nemanich, {R. J.}",
year = "2006",
month = "5",
day = "9",
language = "English",
isbn = "1558998403",
series = "Materials Research Society Symposium Proceedings",
pages = "245--260",
booktitle = "Materials Research Society Symposium Proceedings",

}

Shakouri, A, Bian, Z, Singh, R, Zhang, Y, Vashaee, D, Humphrey, TE, Schmidt, H, Zide, JM, Zeng, G, Bahk, JH, Gossard, AC, Bowers, JE, Rawat, V, Sands, TD, Kim, W, Singer, S, Majumdar, A, Mayer, PM, Ram, RJ, Russel, KJ, Narayanamurti, V, Koeck, FAM, Li, X, Park, JS, Smith, JR, Bilbro, GL, Davis, RF, Sitar, Z & Nemanich, RJ 2006, Solid-state and vacuum thermionic energy conversion. in Materials Research Society Symposium Proceedings. Materials Research Society Symposium Proceedings, vol. 886, pp. 245-260, 2005 Materials Research Society Fall Meeting, Boston, MA, United States, 05/11/28.

Solid-state and vacuum thermionic energy conversion. / Shakouri, A.; Bian, Z.; Singh, R.; Zhang, Y.; Vashaee, D.; Humphrey, T. E.; Schmidt, H.; Zide, J. M.; Zeng, G.; Bahk, J. H.; Gossard, A. C.; Bowers, J. E.; Rawat, V.; Sands, T. D.; Kim, Woochul; Singer, S.; Majumdar, A.; Mayer, P. M.; Ram, R. J.; Russel, K. J.; Narayanamurti, V.; Koeck, F. A.M.; Li, X.; Park, J. S.; Smith, J. R.; Bilbro, G. L.; Davis, R. F.; Sitar, Z.; Nemanich, R. J.

Materials Research Society Symposium Proceedings. 2006. p. 245-260 (Materials Research Society Symposium Proceedings; Vol. 886).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Solid-state and vacuum thermionic energy conversion

AU - Shakouri, A.

AU - Bian, Z.

AU - Singh, R.

AU - Zhang, Y.

AU - Vashaee, D.

AU - Humphrey, T. E.

AU - Schmidt, H.

AU - Zide, J. M.

AU - Zeng, G.

AU - Bahk, J. H.

AU - Gossard, A. C.

AU - Bowers, J. E.

AU - Rawat, V.

AU - Sands, T. D.

AU - Kim, Woochul

AU - Singer, S.

AU - Majumdar, A.

AU - Mayer, P. M.

AU - Ram, R. J.

AU - Russel, K. J.

AU - Narayanamurti, V.

AU - Koeck, F. A.M.

AU - Li, X.

AU - Park, J. S.

AU - Smith, J. R.

AU - Bilbro, G. L.

AU - Davis, R. F.

AU - Sitar, Z.

AU - Nemanich, R. J.

PY - 2006/5/9

Y1 - 2006/5/9

N2 - A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

AB - A brief overview of the research activities at the Thermionic Energy Conversion (TEC) Center is given. The goal is to achieve direct thermal to electric energy conversion with >20% efficiency and>1W/cm 2 power density at a hot side temperature of 300-650C. Thermionic emission in both vacuum and solid-state devices is investigated. In the case of solid-state devices, hot electron filtering using heterostructure barriers is used to increase the thermoelectric power factor. In order to study electron transport above the barriers and lateral momentum conservation in thermionic emission process, the current-voltage characteristic of ballistic transistor structures is investigated. Embedded ErAs nanoparticles and metal/semiconductor multilayers are used to reduce the lattice thermal conductivity. Cross-plane thermoelectric properties and the effective ZT of the thin film are analyzed using the transient Harman technique. Integrated circuit fabrication techniques are used to transfer the n- and p-type thin films on AlN substrates and make power generation modules with hundreds of thin film elements. For vacuum devices, nitrogen-doped diamond and carbon nanotubes are studied for emitters. Sb-doped highly oriented diamond and low electron affinity AlGaN are investigated for collectors. Work functions below 1.6eV and vacuum thermionic power generation at temperatures below 700C have been demonstrated.

UR - http://www.scopus.com/inward/record.url?scp=33646266949&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646266949&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:33646266949

SN - 1558998403

SN - 9781558998407

T3 - Materials Research Society Symposium Proceedings

SP - 245

EP - 260

BT - Materials Research Society Symposium Proceedings

ER -

Shakouri A, Bian Z, Singh R, Zhang Y, Vashaee D, Humphrey TE et al. Solid-state and vacuum thermionic energy conversion. In Materials Research Society Symposium Proceedings. 2006. p. 245-260. (Materials Research Society Symposium Proceedings).