Solid-state dye-sensitized solar cells employing one-pot synthesized supramolecular electrolytes with multiple hydrogen bonding

Jong Kwan Koh, Joo Hwan Koh, Sung Hoon Ahn, Jong Hak Kim, Yong Soo Kang

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Solid-state dye-sensitized solar cells (DSSCs) have been constructed employing supramolecular electrolytes with multiple hydrogen bonding. A supramolecule was facilely synthesized by one-pot reaction between the amines of methyl isocytosine (MIC) and the epoxy groups of poly(ethylene glycol diglycidyl ether) (PEGDGE) to produce quadruple hydrogen bonding units. Hydrogen bonding interactions and dissolution behavior of salt in supramolecular electrolytes are investigated. The ionic conductivity of the supramolecular electrolytes with ionic liquid, i.e. 1-methyl-3-propylimidazolium iodide (MPII) reaches 8.5 × 10-5 S/cm at room temperature, which is higher than that with metal salt (KI). A worm-like morphology is observed in the FE-SEM micrographs of TiO2 nanoporous layer, due to the connection of TiO2 nanoparticles resulting from adequate coating by electrolytes. DSSCs employing the supramolecular electrolytes with MPII and KI exhibit an energy conversion efficiency of 2.5% and 0.5%, respectively, at 100 mW/cm2, indicating the importance of the cation of salt. Solar cell performances were further improved up to 3.7% upon tuning interaction strength in the electrolytes.

Original languageEnglish
Pages (from-to)2567-2574
Number of pages8
JournalElectrochimica Acta
Volume55
Issue number7
DOIs
Publication statusPublished - 2010 Feb 28

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Electrochemistry

Fingerprint Dive into the research topics of 'Solid-state dye-sensitized solar cells employing one-pot synthesized supramolecular electrolytes with multiple hydrogen bonding'. Together they form a unique fingerprint.

  • Cite this