Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

Sung Moon Yoo, Young Joo Song, Sang Young Park, Kyu Hong Choi

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

Original languageEnglish
Pages (from-to)1873-1889
Number of pages17
JournalAdvances in Space Research
Volume43
Issue number12
DOIs
Publication statusPublished - 2009 Jun 15

Bibliographical note

Funding Information:
This work is supported by the Korean Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology (No. M10600000282-06J0000-28210).

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Geophysics
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of 'Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating'. Together they form a unique fingerprint.

Cite this