Abstract
Spin-flip transition can occur in antiferromagnets with strong magnetocrystalline anisotropy, inducing a significant modification of the anisotropic magnetic properties through phase conversion. In contrast to ferromagnets, antiferromagnets have not been thoroughly examined in terms of their anisotropic characteristics. We investigated the magnetic-field and angle-dependent magnetic properties of Ising-type antiferromagnetic Ca0.9Sr0.1Co2As2 using magnetic torque measurements. An A-type antiferromagnetic order emerges below TN = 97 K aligned along the magnetically easy c-axis. The reversal of the angle-dependent torque across the spin-flip transition was observed, revealing the strong influence of the magnetocrystalline anisotropy on the magnetic properties. Based on the easy-axis anisotropic spin model, we theoretically generated torque data and identified specific spin configurations associated with the magnetic torque variation in the presence of a rotating magnetic field. Our results enrich fundamental and applied research on diverse antiferromagnetic compounds by shedding new light on the distinct magnetic features of the Ising-type antiferromagnet.
Original language | English |
---|---|
Article number | 12866 |
Journal | Scientific reports |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 Dec |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) through Grants NRF-2016R1D1A1B01013756, NRF-2017R1A5A1014862 (SRC program: vdWMRC center), NRF-2021R1A2C1006375, and NRF-2022R1A2C1006740. We would like to thank Editage ( www.editage.co.kr ) for English language editing.
Publisher Copyright:
© 2022, The Author(s).
All Science Journal Classification (ASJC) codes
- General