Stabilization of inverted pendulum on a cart in the presence of uncertainties

Joonho Lee, Jongeun Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This paper presents an output feedback control design to stabilize the inverted pendulum at the upright equilibrium as an extension of our previous work [1]. Compared to our previous work, we add one more time scale between a pendulum angle and angular velocity to reduce a traveled distance of the cart. State feedback control is designed to enable the pendulum to pass through input singularity configurations. Extended High-Gain Observers are used to estimate velocity and acceleration terms while dynamic inversion utilizes the estimates to deal with input coefficient uncertainties and singularity configurations. The proposed control is verified through numerical simulations.

Original languageEnglish
Title of host publicationMultiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857267
DOIs
Publication statusPublished - 2015 Jan 1
EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
Duration: 2015 Oct 282015 Oct 30

Publication series

NameASME 2015 Dynamic Systems and Control Conference, DSCC 2015
Volume3

Other

OtherASME 2015 Dynamic Systems and Control Conference, DSCC 2015
CountryUnited States
CityColumbus
Period15/10/2815/10/30

Fingerprint

Pendulums
Stabilization
Feedback control
Angular velocity
State feedback
Computer simulation
Uncertainty

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering
  • Control and Systems Engineering

Cite this

Lee, J., & Choi, J. (2015). Stabilization of inverted pendulum on a cart in the presence of uncertainties. In Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems (ASME 2015 Dynamic Systems and Control Conference, DSCC 2015; Vol. 3). American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2015-9975
Lee, Joonho ; Choi, Jongeun. / Stabilization of inverted pendulum on a cart in the presence of uncertainties. Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems. American Society of Mechanical Engineers, 2015. (ASME 2015 Dynamic Systems and Control Conference, DSCC 2015).
@inproceedings{27c98f7096174ed7af91422d25cb7a4a,
title = "Stabilization of inverted pendulum on a cart in the presence of uncertainties",
abstract = "This paper presents an output feedback control design to stabilize the inverted pendulum at the upright equilibrium as an extension of our previous work [1]. Compared to our previous work, we add one more time scale between a pendulum angle and angular velocity to reduce a traveled distance of the cart. State feedback control is designed to enable the pendulum to pass through input singularity configurations. Extended High-Gain Observers are used to estimate velocity and acceleration terms while dynamic inversion utilizes the estimates to deal with input coefficient uncertainties and singularity configurations. The proposed control is verified through numerical simulations.",
author = "Joonho Lee and Jongeun Choi",
year = "2015",
month = "1",
day = "1",
doi = "10.1115/DSCC2015-9975",
language = "English",
series = "ASME 2015 Dynamic Systems and Control Conference, DSCC 2015",
publisher = "American Society of Mechanical Engineers",
booktitle = "Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems",

}

Lee, J & Choi, J 2015, Stabilization of inverted pendulum on a cart in the presence of uncertainties. in Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems. ASME 2015 Dynamic Systems and Control Conference, DSCC 2015, vol. 3, American Society of Mechanical Engineers, ASME 2015 Dynamic Systems and Control Conference, DSCC 2015, Columbus, United States, 15/10/28. https://doi.org/10.1115/DSCC2015-9975

Stabilization of inverted pendulum on a cart in the presence of uncertainties. / Lee, Joonho; Choi, Jongeun.

Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems. American Society of Mechanical Engineers, 2015. (ASME 2015 Dynamic Systems and Control Conference, DSCC 2015; Vol. 3).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Stabilization of inverted pendulum on a cart in the presence of uncertainties

AU - Lee, Joonho

AU - Choi, Jongeun

PY - 2015/1/1

Y1 - 2015/1/1

N2 - This paper presents an output feedback control design to stabilize the inverted pendulum at the upright equilibrium as an extension of our previous work [1]. Compared to our previous work, we add one more time scale between a pendulum angle and angular velocity to reduce a traveled distance of the cart. State feedback control is designed to enable the pendulum to pass through input singularity configurations. Extended High-Gain Observers are used to estimate velocity and acceleration terms while dynamic inversion utilizes the estimates to deal with input coefficient uncertainties and singularity configurations. The proposed control is verified through numerical simulations.

AB - This paper presents an output feedback control design to stabilize the inverted pendulum at the upright equilibrium as an extension of our previous work [1]. Compared to our previous work, we add one more time scale between a pendulum angle and angular velocity to reduce a traveled distance of the cart. State feedback control is designed to enable the pendulum to pass through input singularity configurations. Extended High-Gain Observers are used to estimate velocity and acceleration terms while dynamic inversion utilizes the estimates to deal with input coefficient uncertainties and singularity configurations. The proposed control is verified through numerical simulations.

UR - http://www.scopus.com/inward/record.url?scp=84973470554&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84973470554&partnerID=8YFLogxK

U2 - 10.1115/DSCC2015-9975

DO - 10.1115/DSCC2015-9975

M3 - Conference contribution

AN - SCOPUS:84973470554

T3 - ASME 2015 Dynamic Systems and Control Conference, DSCC 2015

BT - Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems

PB - American Society of Mechanical Engineers

ER -

Lee J, Choi J. Stabilization of inverted pendulum on a cart in the presence of uncertainties. In Multiagent Network Systems; Natural Gas and Heat Exchangers; Path Planning and Motion Control; Powertrain Systems; Rehab Robotics; Robot Manipulators; Rollover Prevention (AVS); Sensors and Actuators; Time Delay Systems; Tracking Control Systems; Uncertain Systems and Robustness; Unmanned, Ground and Surface Robotics; Vehicle Dynamics Control; Vibration and Control of Smart Structures/Mech Systems; Vibration Issues in Mechanical Systems. American Society of Mechanical Engineers. 2015. (ASME 2015 Dynamic Systems and Control Conference, DSCC 2015). https://doi.org/10.1115/DSCC2015-9975