Stacking-dependent energetics and electronic structure of ultrathin polymorphic V2 VI3 topological insulator nanofilms

Can Li, Torben Winzer, Aron Walsh, Binghai Yan, Catherine Stampfl, Aloysius Soon

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Topological insulators represent a paradigm shift in surface physics. The most extensively studied Bi2Se3-type topological insulators exhibit layered structures, wherein neighboring layers are weakly bonded by van der Waals interactions. Using first-principles density-functional theory calculations, we investigate the impact of the stacking sequence on the energetics and band structure properties of three polymorphs of Bi2Se3,Bi2Te3, and Sb2Te3. Considering their ultrathin films up to 6 nm as a function of its layer thickness, the overall dispersion of the band structure is found to be insensitive to the stacking sequence, while the band gap is highly sensitive, which may also affect the critical thickness for the onset of the topologically nontrivial phase. Our calculations are consistent with both experimental and theoretical results, where available. We further investigate tribological layer slippage, where we find a relatively low energy barrier between two of the considered structures. Both the stacking-dependent band gap and low slippage energy barriers suggest that polymorphic stacking modification may offer an alternative route for controlling the properties of this new state of matter.

Original languageEnglish
Article number075438
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume90
Issue number7
DOIs
Publication statusPublished - 2014 Aug 29

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Stacking-dependent energetics and electronic structure of ultrathin polymorphic V2 VI3 topological insulator nanofilms'. Together they form a unique fingerprint.

  • Cite this