TY - JOUR
T1 - Staggered DG method for coupling of the stokes and darcy-forchheimer problems
AU - Zhao, Lina
AU - Chung, Eric
AU - Park, Eun Jae
AU - Zhou, Guanyu
N1 - Publisher Copyright:
Copyright © 2019, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/6/16
Y1 - 2019/6/16
N2 - In this paper we develop a staggered discontinuous Galerkin method for the Stokes and Darcy-Forchheimer problems coupled with the Beavers-Joseph-Saffman conditions. The method is defined by imposing staggered continuity for all the variables involved and the interface conditions are enforced by switching the roles of the variables met on the interface, which eliminate the hassle of introducing additional variables. This method can be flexibly applied to rough grids such as the highly distorted grids and the polygonal grids. In addition, the method allows nonmatching grids on the interface thanks to the special inclusion of the interface conditions, which is highly appreciated from a practical point of view. A new discrete trace inequality and a generalized Poincaré-Friedrichs inequality are proved, which enables us to prove the optimal convergence estimates under reasonable regularity assumptions. Finally, several numerical experiments are given to illustrate the performances of the proposed method, and the numerical results indicate that the proposed method is accurate and efficient, in addition, it is a good candidate for practical applications.
AB - In this paper we develop a staggered discontinuous Galerkin method for the Stokes and Darcy-Forchheimer problems coupled with the Beavers-Joseph-Saffman conditions. The method is defined by imposing staggered continuity for all the variables involved and the interface conditions are enforced by switching the roles of the variables met on the interface, which eliminate the hassle of introducing additional variables. This method can be flexibly applied to rough grids such as the highly distorted grids and the polygonal grids. In addition, the method allows nonmatching grids on the interface thanks to the special inclusion of the interface conditions, which is highly appreciated from a practical point of view. A new discrete trace inequality and a generalized Poincaré-Friedrichs inequality are proved, which enables us to prove the optimal convergence estimates under reasonable regularity assumptions. Finally, several numerical experiments are given to illustrate the performances of the proposed method, and the numerical results indicate that the proposed method is accurate and efficient, in addition, it is a good candidate for practical applications.
UR - http://www.scopus.com/inward/record.url?scp=85094715501&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094715501&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85094715501
JO - Review of Economic Dynamics
JF - Review of Economic Dynamics
SN - 1094-2025
ER -