State complexity of insertion

Yo Sub Han, Sang Ki Ko, Timothy Ng, Kai Salomaa

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn-m-1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.

Original languageEnglish
Pages (from-to)863-878
Number of pages16
JournalInternational Journal of Foundations of Computer Science
Volume27
Issue number7
DOIs
Publication statusPublished - 2016 Nov 1

Fingerprint

Formal languages
Finite automata

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)

Cite this

Han, Yo Sub ; Ko, Sang Ki ; Ng, Timothy ; Salomaa, Kai. / State complexity of insertion. In: International Journal of Foundations of Computer Science. 2016 ; Vol. 27, No. 7. pp. 863-878.
@article{464392eaf3864ead91c1a7b39f43cd18,
title = "State complexity of insertion",
abstract = "It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn-m-1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.",
author = "Han, {Yo Sub} and Ko, {Sang Ki} and Timothy Ng and Kai Salomaa",
year = "2016",
month = "11",
day = "1",
doi = "10.1142/S0129054116500349",
language = "English",
volume = "27",
pages = "863--878",
journal = "International Journal of Foundations of Computer Science",
issn = "0129-0541",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "7",

}

State complexity of insertion. / Han, Yo Sub; Ko, Sang Ki; Ng, Timothy; Salomaa, Kai.

In: International Journal of Foundations of Computer Science, Vol. 27, No. 7, 01.11.2016, p. 863-878.

Research output: Contribution to journalArticle

TY - JOUR

T1 - State complexity of insertion

AU - Han, Yo Sub

AU - Ko, Sang Ki

AU - Ng, Timothy

AU - Salomaa, Kai

PY - 2016/11/1

Y1 - 2016/11/1

N2 - It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn-m-1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.

AB - It is well known that the resulting language obtained by inserting a regular language to a regular language is regular. We study the nondeterministic and deterministic state complexity of the insertion operation. Given two incomplete DFAs of sizes m and n, we give an upper bound (m+2)·2mn-m-1·3m and find a lower bound for an asymp-totically tight bound. We also present the tight nondeterministic state complexity by a fooling set technique. The deterministic state complexity of insertion is 2Θ(mn) and the nondeterministic state complexity of insertion is precisely mn+2m, where m and n are the size of input finite automata. We also consider the state complexity of insertion in the case where the inserted language is bifix-free or non-returning.

UR - http://www.scopus.com/inward/record.url?scp=85010445361&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85010445361&partnerID=8YFLogxK

U2 - 10.1142/S0129054116500349

DO - 10.1142/S0129054116500349

M3 - Article

AN - SCOPUS:85010445361

VL - 27

SP - 863

EP - 878

JO - International Journal of Foundations of Computer Science

JF - International Journal of Foundations of Computer Science

SN - 0129-0541

IS - 7

ER -