Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT

Byeongjoon Kim, Hyunjung Shim, Jongduk Baek

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Sparse-view computed tomography (CT) has been attracting attention for its reduced radiation dose and scanning time. However, analytical image reconstruction methods such as filtered back-projection (FBP) suffer from streak artifacts due to sparse-view sampling. Because the streak artifacts are deterministic errors, we argue that the same artifacts can be reasonably estimated using a prior image (i.e., smooth image of the same patient) with known imaging system parameters. Based on this idea, we reconstruct an FBP image with sparse-view projection data, regenerate the streak artifacts by forward and back-projection of a prior image with sparse views, and then subtract them from the original FBP image. For the success of this approach, the prior image needs to be patient specific and easily obtained from given sparse-view projection data. Therefore, we introduce a new concept of implicit neural representations for modeling attenuation coefficients. In the implicit neural representations, neural networks output a patient-specific attenuation coefficient value for an input pixel coordinate. In this way, network's parameters serve as an implicit representation of a CT image. Unlike conventional deep learning approaches that utilize a large, labeled dataset, an implicit neural representation is optimized using only sparse-view projection data of a single patient. This avoids having a bias toward a group of patients in the dataset and helps to capture unique characteristics of the individual properly. We validated the proposed method using fan-beam CT simulation data of an extended cardiac-torso phantom and compared the results with total variation-based iterative reconstruction and an image-based convolutional neural network.

Original languageEnglish
Title of host publicationMedical Imaging 2022
Subtitle of host publicationPhysics of Medical Imaging
EditorsWei Zhao, Lifeng Yu
PublisherSPIE
ISBN (Electronic)9781510649378
DOIs
Publication statusPublished - 2022
EventMedical Imaging 2022: Physics of Medical Imaging - Virtual, Online
Duration: 2022 Mar 212022 Mar 27

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12031
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2022: Physics of Medical Imaging
CityVirtual, Online
Period22/3/2122/3/27

Bibliographical note

Funding Information:
This research was supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF2019R1A2C2084936 and 2020R1A4A1016619) and the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health Welfare, Republic of Korea, the Ministry of Food and Drug Safety) (202011A03).

Publisher Copyright:
© 2022 SPIE.

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT'. Together they form a unique fingerprint.

Cite this