Abstract
We report on changes in the structural, interfacial, and electrical characteristics of sub-1 nm equivalent oxide thickness (EOT) HfO2 grown on InAs by atomic layer deposition. When the HfO2 film was deposited on an InAs substrate at a temperature of 300°C, the HfO2 was in an amorphous phase with an sharp interface, an EOT of 0.9 nm, and low preexisting interfacial defect states. During post deposition annealing (PDA) at 600°C, the HfO2 was transformed from an amorphous to a single crystalline orthorhombic phase, which minimizes the interfacial lattice mismatch below 0.8%. Accordingly, the HfO2 dielectric after the PDA had a dielectric constant of ∼24 because of the permittivity of the well-ordered orthorhombic HfO2 structure. Moreover, border traps were reduced by half than the as-grown sample due to a reduction in bulk defects in HfO2 dielectric during the PDA. However, in terms of other electrical properties, the characteristics of the PDA-treated sample were degraded compared to the as-grown sample, with EOT values of 1.0 nm and larger interfacial defect states (Dit) above 1 × 1014 cm-2 eV-1. X-ray photoelectron spectroscopy data indicated that the diffusion of In atoms from the InAs substrate into the HfO2 dielectric during the PDA at 600°C resulted in the development of substantial midgap states.
Original language | English |
---|---|
Pages (from-to) | 7489-7498 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2016 Mar 30 |
Bibliographical note
Funding Information:This work was partially supported by an Industry-Academy joint research program between Samsung Electronics and Yonsei University; J.-D.S. acknowledges the support from KIST institutional programs of flag-ship.
Publisher Copyright:
© 2016 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)