Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles

Federico Brivio, Alison B. Walker, Aron Walsh

Research output: Contribution to journalArticle

375 Citations (Scopus)


The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal and organic halides [e.g., (NH 4)PbI3 and (CH3NH3)PbI3], are largely unknown. The materials are semiconductors with direct band gaps at the boundary of the first Brillouin zone. The calculated dielectric constants and band gaps show an orientation dependence, with a low barrier for rotation of the organic cations. Due to the electric dipole of the methylammonium cation, a photoferroic effect may be accessible, which could enhance carrier collection.

Original languageEnglish
Article number042111
JournalAPL Materials
Issue number4
Publication statusPublished - 2013 Oct


All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)

Cite this