Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase

Pengfei Fang, Xue Yu, Seung Jae Jeong, Adam Mirando, Kaige Chen, Xin Chen, Sunghoon Kim, Christopher S. Francklyn, Min Guo

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

The polyketide natural product borrelidin displays antibacterial, antifungal, antimalarial, anticancer, insecticidal and herbicidal activities through the selective inhibition of threonyl-tRNA synthetase (ThrRS). How borrelidin simultaneously attenuates bacterial growth and suppresses a variety of infections in plants and animals is not known. Here we show, using X-ray crystal structures and functional analyses, that a single molecule of borrelidin simultaneously occupies four distinct subsites within the catalytic domain of bacterial and human ThrRSs. These include the three substrate-binding sites for amino acid, ATP and tRNA associated with aminoacylation, and a fourth orthogonalsubsite created as a consequence of binding. Thus, borrelidin competes with all three aminoacylation substrates, providing a potent and redundant mechanism to inhibit ThrRS during protein synthesis. These results highlight a surprising natural design to achieve the quadrivalent inhibition of translation through a highly conserved family of enzymes.

Original languageEnglish
Article number6402
JournalNature communications
Volume6
DOIs
Publication statusPublished - 2015 Mar 31

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase'. Together they form a unique fingerprint.

Cite this