TY - JOUR
T1 - Structural, thermal, and tribological properties of poly(vinylidene fluoride)/nano-TiO2 composites prepared by dry-mixing and hot-press technique
AU - Jung, Jung Pyo
AU - Kim, Ji Su
AU - Han, Tong Seok
AU - Kim, Jong Hak
N1 - Publisher Copyright:
© 2017, The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - This paper describes the morphological, thermal, and tribological characteristics of poly(vinylidene fluoride) (PVDF)-based composites dispersed with nanosized TiO2 (nano-TiO2) particles. PVDF/nano-TiO2 composites with different nano-TiO2 loading (~40 wt%) were prepared via a dry-mixing and uniaxial hot-press molding technique. The incorporation of nano-TiO2 led to changes in the crystal structure of the PVDF, as characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. The uniform distribution and good interactions of the composites were confirmed by scanning electron microscopy and energy-dispersive spectrometry. The frictional performances increased with the amount of nano-TiO2 owing to the preferential formation of a nonpolar α-phase crystal and the reduced viscoelastic characteristics of the PVDF. The PVDF/nano-TiO2 composite with 30% loading exhibited the best frictional performance (a staticfriction coefficient of 0.23 and a kinetic-friction coefficient of 0.17), which is comparable to that of the composite prepared via a costly, environmentally unfriendly wet-mixing technique. Furthermore, the taber abrasion resistances were comparable to that of commercialized ultra-high-molecular-weight polyethylene (UHMWPE), indicating the effectiveness of PVDF/nano-TiO2 hybridization. [Figure not available: see fulltext.]
AB - This paper describes the morphological, thermal, and tribological characteristics of poly(vinylidene fluoride) (PVDF)-based composites dispersed with nanosized TiO2 (nano-TiO2) particles. PVDF/nano-TiO2 composites with different nano-TiO2 loading (~40 wt%) were prepared via a dry-mixing and uniaxial hot-press molding technique. The incorporation of nano-TiO2 led to changes in the crystal structure of the PVDF, as characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. The uniform distribution and good interactions of the composites were confirmed by scanning electron microscopy and energy-dispersive spectrometry. The frictional performances increased with the amount of nano-TiO2 owing to the preferential formation of a nonpolar α-phase crystal and the reduced viscoelastic characteristics of the PVDF. The PVDF/nano-TiO2 composite with 30% loading exhibited the best frictional performance (a staticfriction coefficient of 0.23 and a kinetic-friction coefficient of 0.17), which is comparable to that of the composite prepared via a costly, environmentally unfriendly wet-mixing technique. Furthermore, the taber abrasion resistances were comparable to that of commercialized ultra-high-molecular-weight polyethylene (UHMWPE), indicating the effectiveness of PVDF/nano-TiO2 hybridization. [Figure not available: see fulltext.]
UR - http://www.scopus.com/inward/record.url?scp=85019008443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019008443&partnerID=8YFLogxK
U2 - 10.1007/s13233-017-5041-9
DO - 10.1007/s13233-017-5041-9
M3 - Article
AN - SCOPUS:85019008443
VL - 25
SP - 365
EP - 373
JO - Macromolecular Research
JF - Macromolecular Research
SN - 1598-5032
IS - 4
ER -