Abstract
This paper studies the keyphrase generation (KG) task for scenarios where structure plays an important role. For example, a scientific publication consists of a short title and a long body, where the title can be used for de-emphasizing unimportant details in the body. Similarly, for short social media posts (e.g., tweets), scarce context can be augmented from titles, though often missing. Our contribution is generating/augmenting structure then encoding these information, using existing keyphrases of other documents, complementing missing/incomplete titles. Specifically, we first extend the given document with related but absent keyphrases from existing keyphrases, to augment missing contexts (generating structure), and then, build a graph of keyphrases and the given document, to obtain structure-aware representation of the augmented text (encoding structure). Our empirical results validate that our proposed structure augmentation and structure-aware encoding can improve KG for both scenarios, outperforming the state-of-the-art.
Original language | English |
---|---|
Title of host publication | EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 2657-2667 |
Number of pages | 11 |
ISBN (Electronic) | 9781955917094 |
Publication status | Published - 2021 |
Event | 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Virtual, Punta Cana, Dominican Republic Duration: 2021 Nov 7 → 2021 Nov 11 |
Publication series
Name | EMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings |
---|
Conference
Conference | 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 |
---|---|
Country/Territory | Dominican Republic |
City | Virtual, Punta Cana |
Period | 21/11/7 → 21/11/11 |
Bibliographical note
Funding Information:This work is supported by IITP grants (ITRC, 2021-2020-0-01789, 2021-2016-0-00464) and SNU AI Graduate School Program (2021-0-01343).
Publisher Copyright:
© 2021 Association for Computational Linguistics
All Science Journal Classification (ASJC) codes
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems