Study of J/ψ azimuthal anisotropy at forward rapidity in Pb-Pb collisions at √sNN=5.02 TeV

The ALICE Collaboration

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

The second (v2) and third (v3) flow harmonic coefficients of J/ψ mesons are measured at forward rapidity (2.5 < y < 4.0) in Pb-Pb collisions at sNN=5.02 TeV with the ALICE detector at the LHC. Results are obtained with the scalar product method and reported as a function of transverse momentum, pT, for various collision centralities. A positive value of J/ψ v3 is observed with 3.7σ significance. The measurements, compared to those of prompt D0 mesons and charged particles at mid-rapidity, indicate an ordering with vn(J/ψ) < vn(D0) < vn(h±) (n = 2, 3) at low and intermediate pT up to 6 GeV/c and a convergence with v2(J/ψ) ≈ v2(D0) ≈ v2(h±) at high pT above 6–8 GeV/c. In semi-central collisions (5–40% and 10–50% centrality intervals) at intermediate pT between 2 and 6 GeV/c, the ratio v3/v2 of J/ψ mesons is found to be significantly lower (4.6σ) with respect to that of charged particles. In addition, the comparison to the prompt D0-meson ratio in the same pT interval suggests an ordering similar to that of the v2 and v3 coefficients. The J/ψ v2 coefficient is further studied using the Event Shape Engineering technique. The obtained results are found to be compatible with the expected variations of the eccentricity of the initial-state geometry.

Original languageEnglish
Article number12
JournalJournal of High Energy Physics
Volume2019
Issue number2
DOIs
Publication statusPublished - 2019 Feb 1

Bibliographical note

Funding Information:
Open Access, Copyright CERN, for the benefit of the ALICE Collaboration. Article funded by SCOAP3.

Funding Information:
The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC) , China; Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Sci-entifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Cien-cia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),

Publisher Copyright:
© 2019, The Author(s).

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Study of J/ψ azimuthal anisotropy at forward rapidity in Pb-Pb collisions at √sNN=5.02 TeV'. Together they form a unique fingerprint.

Cite this