Abstract
Methods for creating unique superhydrophilic interfaces by means of layer-by-layer (LbL) assembly have been demonstrated, and such interfaces have been used extensively in a variety of practical applications. Further, fabricating multifunctional superhydrophilic coatings using low-cost, nontoxic, environment-friendly, and plentiful materials from biological resources is highly desirable. Herein, superhydrophilic coatings with a highly jagged surface morphology were synthesized based on the electrostatic-interaction- or hydrogen-bonding-based LbL assembly of the biotic materials chitosan (CHI) and rice husk ash (RHA) nanosilica, which are abundantly available in nature. The synthesized multilayered (CHI/RHA nanosilica)n films were highly transparent and resisted fogging, frosting, and biofouling. Specifically, given the water-absorbing capability of the films, they showed excellent antifogging and antifrosting properties even under aggressive fogging and frosting conditions. Further, the as-prepared superhydrophilic multilayered films, which had a rough surface structure at the micro- and nanoscale, showed potential in reducing the attachment of proteins and various microorganisms, significantly preventing the phenomenon of biofouling in stagnant liquids. Hence, this work provides a new route for assembling superwetting coatings from cost-effective natural materials for use in industrial applications.
Original language | English |
---|---|
Pages (from-to) | 463-470 |
Number of pages | 8 |
Journal | Chemical Engineering Journal |
Volume | 309 |
DOIs | |
Publication status | Published - 2017 Feb 1 |
Bibliographical note
Funding Information:This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF) funded by the Korean Government (Grant 2012M3A9C6050104 ) and supported by the National Research Foundation of Korea (NRF), funded by the Korean Government Ministry of Science, ICT & Future Planning (Grant 2013R1A1A1076126 ). Additionally, this research was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant HI14C-3266 , HI15C-1653 ).
Publisher Copyright:
© 2016 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering