Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment

Graft polymerization and cross-linking followed by functional group substitution

Jae Hyuk Kim, Pyungkyu Park, Chung Hak Lee, Heock Hoi Kwon

Research output: Contribution to journalArticle

73 Citations (Scopus)

Abstract

A commercially available thin film composite (TFC) polyamide (PA) nanofiltration (NF) membrane was chemically modified to improve its rejection capacity for selected organic micro-pollutants categorized as endocrine disrupting chemicals (EDCs) and pharmaceutically active compounds (PhACs): bisphenol-A (BPA), ibuprofen, and salicylic acid. The raw NF membrane was altered using the following modification sequence: graft polymerization (methacrylic acid (MA)-membrane); cross-linking of grafted polymer chains (ethylene diamine (ED)-membrane); and, substitution of functional groups (succinic acid (SA)-membrane). Attenuated total reflective Fourier transform infrared (ATR-FTIR) was used to verify each modification in the sequence: the formation of amide bonds; graft polymerization and cross-linking; and, increased carboxylic acids on the modified membrane. Based on zeta-potential and contact angle measurements, graft polymerization increased the negative charge and hydrophilicity of the raw membrane, while cross-linking replaced carboxylic acid with amide bonds, which made the modified membrane almost neutral at pH 6.5. The water fluxes of the ED- and SA-membranes were similar to that of the raw membrane; however, the water flux of the MA-membranes varied with polymerization time (the membrane polymerized for 15 min revealed ≥20% higher flux than the raw membrane). BPA rejection by the raw membrane was substantially improved from 74% to ≥95% after this series of modifications. However, the rejection capacity of the ED-membrane for ibuprofen and salicylic acid was slightly reduced compared with those of the MA-membrane, which was polymerized for 15 min, due to the lack of an electrical repulsion mechanism. The SA-membrane recovered its negative surface charge and showed a clear enhancement in the rejection of all pollutants.

Original languageEnglish
Pages (from-to)190-198
Number of pages9
JournalJournal of Membrane Science
Volume321
Issue number2
DOIs
Publication statusPublished - 2008 Aug 15

Fingerprint

Endocrine Disruptors
Nanofiltration membranes
disrupting
drinking
water treatment
Water Purification
Water treatment
Grafts
Potable water
Polymerization
Drinking Water
Functional groups
contaminants
Surface treatment
Substitution reactions
polymerization
substitutes
membranes
Membranes
Transplants

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Cite this

@article{a578405ebc4f4c5aafe96328dba9bef6,
title = "Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: Graft polymerization and cross-linking followed by functional group substitution",
abstract = "A commercially available thin film composite (TFC) polyamide (PA) nanofiltration (NF) membrane was chemically modified to improve its rejection capacity for selected organic micro-pollutants categorized as endocrine disrupting chemicals (EDCs) and pharmaceutically active compounds (PhACs): bisphenol-A (BPA), ibuprofen, and salicylic acid. The raw NF membrane was altered using the following modification sequence: graft polymerization (methacrylic acid (MA)-membrane); cross-linking of grafted polymer chains (ethylene diamine (ED)-membrane); and, substitution of functional groups (succinic acid (SA)-membrane). Attenuated total reflective Fourier transform infrared (ATR-FTIR) was used to verify each modification in the sequence: the formation of amide bonds; graft polymerization and cross-linking; and, increased carboxylic acids on the modified membrane. Based on zeta-potential and contact angle measurements, graft polymerization increased the negative charge and hydrophilicity of the raw membrane, while cross-linking replaced carboxylic acid with amide bonds, which made the modified membrane almost neutral at pH 6.5. The water fluxes of the ED- and SA-membranes were similar to that of the raw membrane; however, the water flux of the MA-membranes varied with polymerization time (the membrane polymerized for 15 min revealed ≥20{\%} higher flux than the raw membrane). BPA rejection by the raw membrane was substantially improved from 74{\%} to ≥95{\%} after this series of modifications. However, the rejection capacity of the ED-membrane for ibuprofen and salicylic acid was slightly reduced compared with those of the MA-membrane, which was polymerized for 15 min, due to the lack of an electrical repulsion mechanism. The SA-membrane recovered its negative surface charge and showed a clear enhancement in the rejection of all pollutants.",
author = "Kim, {Jae Hyuk} and Pyungkyu Park and Lee, {Chung Hak} and Kwon, {Heock Hoi}",
year = "2008",
month = "8",
day = "15",
doi = "10.1016/j.memsci.2008.04.055",
language = "English",
volume = "321",
pages = "190--198",
journal = "Journal of Membrane Science",
issn = "0376-7388",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment

T2 - Graft polymerization and cross-linking followed by functional group substitution

AU - Kim, Jae Hyuk

AU - Park, Pyungkyu

AU - Lee, Chung Hak

AU - Kwon, Heock Hoi

PY - 2008/8/15

Y1 - 2008/8/15

N2 - A commercially available thin film composite (TFC) polyamide (PA) nanofiltration (NF) membrane was chemically modified to improve its rejection capacity for selected organic micro-pollutants categorized as endocrine disrupting chemicals (EDCs) and pharmaceutically active compounds (PhACs): bisphenol-A (BPA), ibuprofen, and salicylic acid. The raw NF membrane was altered using the following modification sequence: graft polymerization (methacrylic acid (MA)-membrane); cross-linking of grafted polymer chains (ethylene diamine (ED)-membrane); and, substitution of functional groups (succinic acid (SA)-membrane). Attenuated total reflective Fourier transform infrared (ATR-FTIR) was used to verify each modification in the sequence: the formation of amide bonds; graft polymerization and cross-linking; and, increased carboxylic acids on the modified membrane. Based on zeta-potential and contact angle measurements, graft polymerization increased the negative charge and hydrophilicity of the raw membrane, while cross-linking replaced carboxylic acid with amide bonds, which made the modified membrane almost neutral at pH 6.5. The water fluxes of the ED- and SA-membranes were similar to that of the raw membrane; however, the water flux of the MA-membranes varied with polymerization time (the membrane polymerized for 15 min revealed ≥20% higher flux than the raw membrane). BPA rejection by the raw membrane was substantially improved from 74% to ≥95% after this series of modifications. However, the rejection capacity of the ED-membrane for ibuprofen and salicylic acid was slightly reduced compared with those of the MA-membrane, which was polymerized for 15 min, due to the lack of an electrical repulsion mechanism. The SA-membrane recovered its negative surface charge and showed a clear enhancement in the rejection of all pollutants.

AB - A commercially available thin film composite (TFC) polyamide (PA) nanofiltration (NF) membrane was chemically modified to improve its rejection capacity for selected organic micro-pollutants categorized as endocrine disrupting chemicals (EDCs) and pharmaceutically active compounds (PhACs): bisphenol-A (BPA), ibuprofen, and salicylic acid. The raw NF membrane was altered using the following modification sequence: graft polymerization (methacrylic acid (MA)-membrane); cross-linking of grafted polymer chains (ethylene diamine (ED)-membrane); and, substitution of functional groups (succinic acid (SA)-membrane). Attenuated total reflective Fourier transform infrared (ATR-FTIR) was used to verify each modification in the sequence: the formation of amide bonds; graft polymerization and cross-linking; and, increased carboxylic acids on the modified membrane. Based on zeta-potential and contact angle measurements, graft polymerization increased the negative charge and hydrophilicity of the raw membrane, while cross-linking replaced carboxylic acid with amide bonds, which made the modified membrane almost neutral at pH 6.5. The water fluxes of the ED- and SA-membranes were similar to that of the raw membrane; however, the water flux of the MA-membranes varied with polymerization time (the membrane polymerized for 15 min revealed ≥20% higher flux than the raw membrane). BPA rejection by the raw membrane was substantially improved from 74% to ≥95% after this series of modifications. However, the rejection capacity of the ED-membrane for ibuprofen and salicylic acid was slightly reduced compared with those of the MA-membrane, which was polymerized for 15 min, due to the lack of an electrical repulsion mechanism. The SA-membrane recovered its negative surface charge and showed a clear enhancement in the rejection of all pollutants.

UR - http://www.scopus.com/inward/record.url?scp=46149083934&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=46149083934&partnerID=8YFLogxK

U2 - 10.1016/j.memsci.2008.04.055

DO - 10.1016/j.memsci.2008.04.055

M3 - Article

VL - 321

SP - 190

EP - 198

JO - Journal of Membrane Science

JF - Journal of Membrane Science

SN - 0376-7388

IS - 2

ER -