Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate

Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells

Su Min Han, Jong Suep Baek, Min Soo Kim, Sung Joo Hwang, Cheong Weon Cho

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Liposomes can achieve a controlled release and an improved bioavailability of water- insoluble drug with minimized side effects. Paclitaxel is an efficient anticancer drug for the treatment of various cancers. However, paclitaxel has a solubility of 0.5 mg/L in water and a low bioavailability of 6.5%. Moreover, paclitaxel is a substrate for p-glycoprotein, which shows a decreased accumulation of drug within the cancer cell expressed by a p-glycoprotein. Therefore, the purpose of this study is to prepare a paclitaxel-loaded liposome and evaluate the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as an inhibitor of p-glycoprotein on the paclitaxel-loaded liposome. The paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome had spherical vesicles, with mean particle size 184.9 ± 18.45 nm with PDI 0.324 ± 0.018 and 282.6 ± 20.41 nm with PDI 0.269 ± 0.013, respectively. Paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome showed a controlled and sustained release of PTX over 72 h. The cellular uptake of paclitaxel from TPGS coated paclitaxel-loaded liposome was a 3.56-fold increase for 2 h and 5.75-fold increase for 4 h compared to that from paclitaxel-loaded liposome in MCF-7/ADR cells, resulting in improved cytotoxicity against MCF-7/ADR cells. Western blot assay revealed the P-gp inhibitory effect of TPGS-coated PTX-liposome. In conclusion, TPGS coated liposome with a sustained releasing capability and the inhibitory effect of p-glycoprotein may be a promising carrier for future applications in cancer therapy.

Original languageEnglish
Pages (from-to)39-47
Number of pages9
JournalChemistry and Physics of Lipids
Volume213
DOIs
Publication statusPublished - 2018 Jul 1

Fingerprint

Succinic Acid
Cytotoxicity
Paclitaxel
Liposomes
Surface treatment
Cells
Breast Neoplasms
Glycoproteins
MCF-7 Cells
Biological Availability
polyethylene glycol 1000
Pharmaceutical Preparations
Neoplasms
Water
Particle Size
Solubility
Assays
Western Blotting
Particle size

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Organic Chemistry
  • Cell Biology

Cite this

@article{69b847f6ac1247bd81283fce078f47ff,
title = "Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells",
abstract = "Liposomes can achieve a controlled release and an improved bioavailability of water- insoluble drug with minimized side effects. Paclitaxel is an efficient anticancer drug for the treatment of various cancers. However, paclitaxel has a solubility of 0.5 mg/L in water and a low bioavailability of 6.5{\%}. Moreover, paclitaxel is a substrate for p-glycoprotein, which shows a decreased accumulation of drug within the cancer cell expressed by a p-glycoprotein. Therefore, the purpose of this study is to prepare a paclitaxel-loaded liposome and evaluate the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as an inhibitor of p-glycoprotein on the paclitaxel-loaded liposome. The paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome had spherical vesicles, with mean particle size 184.9 ± 18.45 nm with PDI 0.324 ± 0.018 and 282.6 ± 20.41 nm with PDI 0.269 ± 0.013, respectively. Paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome showed a controlled and sustained release of PTX over 72 h. The cellular uptake of paclitaxel from TPGS coated paclitaxel-loaded liposome was a 3.56-fold increase for 2 h and 5.75-fold increase for 4 h compared to that from paclitaxel-loaded liposome in MCF-7/ADR cells, resulting in improved cytotoxicity against MCF-7/ADR cells. Western blot assay revealed the P-gp inhibitory effect of TPGS-coated PTX-liposome. In conclusion, TPGS coated liposome with a sustained releasing capability and the inhibitory effect of p-glycoprotein may be a promising carrier for future applications in cancer therapy.",
author = "Han, {Su Min} and Baek, {Jong Suep} and Kim, {Min Soo} and Hwang, {Sung Joo} and Cho, {Cheong Weon}",
year = "2018",
month = "7",
day = "1",
doi = "10.1016/j.chemphyslip.2018.03.005",
language = "English",
volume = "213",
pages = "39--47",
journal = "Chemistry and Physics of Lipids",
issn = "0009-3084",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate

T2 - Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells

AU - Han, Su Min

AU - Baek, Jong Suep

AU - Kim, Min Soo

AU - Hwang, Sung Joo

AU - Cho, Cheong Weon

PY - 2018/7/1

Y1 - 2018/7/1

N2 - Liposomes can achieve a controlled release and an improved bioavailability of water- insoluble drug with minimized side effects. Paclitaxel is an efficient anticancer drug for the treatment of various cancers. However, paclitaxel has a solubility of 0.5 mg/L in water and a low bioavailability of 6.5%. Moreover, paclitaxel is a substrate for p-glycoprotein, which shows a decreased accumulation of drug within the cancer cell expressed by a p-glycoprotein. Therefore, the purpose of this study is to prepare a paclitaxel-loaded liposome and evaluate the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as an inhibitor of p-glycoprotein on the paclitaxel-loaded liposome. The paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome had spherical vesicles, with mean particle size 184.9 ± 18.45 nm with PDI 0.324 ± 0.018 and 282.6 ± 20.41 nm with PDI 0.269 ± 0.013, respectively. Paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome showed a controlled and sustained release of PTX over 72 h. The cellular uptake of paclitaxel from TPGS coated paclitaxel-loaded liposome was a 3.56-fold increase for 2 h and 5.75-fold increase for 4 h compared to that from paclitaxel-loaded liposome in MCF-7/ADR cells, resulting in improved cytotoxicity against MCF-7/ADR cells. Western blot assay revealed the P-gp inhibitory effect of TPGS-coated PTX-liposome. In conclusion, TPGS coated liposome with a sustained releasing capability and the inhibitory effect of p-glycoprotein may be a promising carrier for future applications in cancer therapy.

AB - Liposomes can achieve a controlled release and an improved bioavailability of water- insoluble drug with minimized side effects. Paclitaxel is an efficient anticancer drug for the treatment of various cancers. However, paclitaxel has a solubility of 0.5 mg/L in water and a low bioavailability of 6.5%. Moreover, paclitaxel is a substrate for p-glycoprotein, which shows a decreased accumulation of drug within the cancer cell expressed by a p-glycoprotein. Therefore, the purpose of this study is to prepare a paclitaxel-loaded liposome and evaluate the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as an inhibitor of p-glycoprotein on the paclitaxel-loaded liposome. The paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome had spherical vesicles, with mean particle size 184.9 ± 18.45 nm with PDI 0.324 ± 0.018 and 282.6 ± 20.41 nm with PDI 0.269 ± 0.013, respectively. Paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome showed a controlled and sustained release of PTX over 72 h. The cellular uptake of paclitaxel from TPGS coated paclitaxel-loaded liposome was a 3.56-fold increase for 2 h and 5.75-fold increase for 4 h compared to that from paclitaxel-loaded liposome in MCF-7/ADR cells, resulting in improved cytotoxicity against MCF-7/ADR cells. Western blot assay revealed the P-gp inhibitory effect of TPGS-coated PTX-liposome. In conclusion, TPGS coated liposome with a sustained releasing capability and the inhibitory effect of p-glycoprotein may be a promising carrier for future applications in cancer therapy.

UR - http://www.scopus.com/inward/record.url?scp=85044131855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044131855&partnerID=8YFLogxK

U2 - 10.1016/j.chemphyslip.2018.03.005

DO - 10.1016/j.chemphyslip.2018.03.005

M3 - Article

VL - 213

SP - 39

EP - 47

JO - Chemistry and Physics of Lipids

JF - Chemistry and Physics of Lipids

SN - 0009-3084

ER -