### Abstract

We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

Original language | English |
---|---|

Pages (from-to) | 21-41 |

Number of pages | 21 |

Journal | Nuclear Physics A |

Volume | 945 |

DOIs | |

Publication status | Published - 2016 Jan 1 |

### All Science Journal Classification (ASJC) codes

- Nuclear and High Energy Physics

## Fingerprint Dive into the research topics of 'Symmetry energy in cold dense matter'. Together they form a unique fingerprint.

## Cite this

*Nuclear Physics A*,

*945*, 21-41. https://doi.org/10.1016/j.nuclphysa.2015.09.010