Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts

Yong Cheol Shin, Jong Ho Lee, Oh Seong Jin, Seok Hee Kang, Suck Won Hong, Bongju Kim, Jong Chul Park, Dong Wook Han

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)


Osteoprogenitor cells, known as preosteoblasts, that arise from mesenchymal stem cells in the bone marrow are types of cells that work in the growth or repair of bones. These cells possess the prominent potential to differentiate toward the osteogenic lineage, and therefore offer promising opportunities for bone tissue engineering and regenerative therapy. However, to fully exploit the application of osteoprogenitor cells in bone regeneration, it is critical to develop biochemical, physical or pharmaceutical factors that can precisely control their osteogenic differentiation. In this study, we hypothesized that reduced graphene oxide (rGO) and hydroxyapatite (HAp) composites could synergistically enhance the osteogenic differentiation of preosteoblasts. Without interference with the proliferation of MC3T3-E1 preosteoblasts, rGO/HAp composites synergistically enhanced the osteogenic differentiation of the preosteoblasts, which had been confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. This osteogenic activity mediated by rGO/HAp composites was further accelerated under osteogenic culture conditions. It is suggested that rGO/HAp hybrid composites can serve as biocompatible, transferable, and implantable scaffolds for bone regeneration because these graphene-based composite materials have the potential to promote spontaneous osteogenesis in the absence of any osteogenic factors.

Original languageEnglish
Pages (from-to)1051-1060
Number of pages10
Publication statusPublished - 2015 Oct 11

Bibliographical note

Funding Information:
This study was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MEST) (No. 2015M3A9E2028643 ).

Publisher Copyright:
© 2015 Elsevier Ltd.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)


Dive into the research topics of 'Synergistic effects of reduced graphene oxide and hydroxyapatite on osteogenic differentiation of MC3T3-E1 preosteoblasts'. Together they form a unique fingerprint.

Cite this