Synthesis and characterization of multifunctional Fe 3O 4/poly(fluorescein O-methacrylate) core/shell nanoparticles

Patakamuri Govindaiah, Taewon Hwang, Hyunhee Yoo, Yong Seok Kim, Sun Jong Lee, Sung Wook Choi, Jung Hyun Kim

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Multifunctional fluorescent and superparamagnetic Fe 3O 4/poly(fluorescein O-methacrylate) [Fe 3O 4/poly(FMA)] nanoparticles with core/shell structure were synthesized via surface-initiated polymerization. First, polymerizable double bonds were introduced onto the surface of Fe 3O 4 nanoparticles via ligand exchange and a condensation reaction. A fluorescent monomer, FMA, was then polymerized to the double bonds at the surface via free-radical polymerization, leading to form a fluorescent polymer shell around the superparamagnetic Fe 3O 4 core. The resultant Fe 3O 4/poly(FMA) nanoparticles were characterized by Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy to confirm the reactions. Transmission electron microscopy images showed that the Fe 3O 4/poly(FMA) nanoparticles have a spherical and monodisperse core/shell morphology. Photoluminescence spectroscopy and superconducting quantum interference device magnetometer analyses confirmed that the Fe 3O 4/poly(FMA) nanoparticles exhibited fluorescent and superparamagnetic properties, respectively. In addition, we demonstrated the potential bioimaging application of the Fe 3O 4/poly(FMA) nanoparticles by visualizing the cellular uptake of the nanoparticles into A549 lung cancer cells.

Original languageEnglish
Pages (from-to)27-32
Number of pages6
JournalJournal of Colloid and Interface Science
Volume379
Issue number1
DOIs
Publication statusPublished - 2012 Aug 1

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry

Cite this