Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions

S. Subramani, J. M. Lee, I. W. Cheong, J. H. Kim

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

A series of water-based polyurethane dispersions were synthesized by the polyaddition of isophorone diisocyanate, poly(oxytetramethylene) glycol, and dimethylol propionic acid as prepolymers, which were end-capped and crosslinked with 3-aminopropyl trimethoxysilane (APTMS) to produce silylated polyurethane dispersions (SPUDs). The dispersion was performed before the end-capping reaction to avoid gelation. Pure and tetraethylene pentamine chain-extended polyurethanes were also synthesized. The length of the soft segment and the ratio of NCO to OH were varied. The properties of these prepolymer dispersions were investigated with Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, tensile and surface contact-angle measurements, nanoindentation testing, gel content, water and xylene swellability, and storage stability. An increase in the modulus and hardness and a decrease in the tensile properties of SPUDs were noticed in comparison with a pure polyurethane dispersion. This may have been due to the smaller number of hydrogen bonds and the brittleness of the film by the formation of crosslinked siloxane networks through the hydrolysis-condensation reaction of methoxysilane groups of silylated polyurethane, and it was also confirmed by the reactions of APTMS end capping and crosslinking. The gel content of SPUDs increased with the NCO/OH ratio, and all the prepared samples were amorphous in nature. The thermal stability of SPUDs was higher than that of pure and amine-chain-extended polyurethane dispersions. A decrease in the water and solvent swelling and an increase in the water contact angle confirmed the effective crosslinking of the silanol groups of the silylated polyurethane. Storage-stability results showed that all the prepared dispersions were stable for more than 3 months.

Original languageEnglish
Pages (from-to)620-631
Number of pages12
JournalJournal of Applied Polymer Science
Volume98
Issue number2
DOIs
Publication statusPublished - 2005 Oct 15

Fingerprint

Polyurethanes
Dispersions
Water
pentamine
Crosslinking
Contact angle
Gels
Siloxanes
Propionic acid
Xylenes
Glycols
Condensation reactions
Nanoindentation
Gelation
Xylene
Brittleness
Angle measurement
Tensile properties
Water content
Amines

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry

Cite this

@article{eb53596c63c04fde8f98fb5af7e6aa84,
title = "Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions",
abstract = "A series of water-based polyurethane dispersions were synthesized by the polyaddition of isophorone diisocyanate, poly(oxytetramethylene) glycol, and dimethylol propionic acid as prepolymers, which were end-capped and crosslinked with 3-aminopropyl trimethoxysilane (APTMS) to produce silylated polyurethane dispersions (SPUDs). The dispersion was performed before the end-capping reaction to avoid gelation. Pure and tetraethylene pentamine chain-extended polyurethanes were also synthesized. The length of the soft segment and the ratio of NCO to OH were varied. The properties of these prepolymer dispersions were investigated with Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, tensile and surface contact-angle measurements, nanoindentation testing, gel content, water and xylene swellability, and storage stability. An increase in the modulus and hardness and a decrease in the tensile properties of SPUDs were noticed in comparison with a pure polyurethane dispersion. This may have been due to the smaller number of hydrogen bonds and the brittleness of the film by the formation of crosslinked siloxane networks through the hydrolysis-condensation reaction of methoxysilane groups of silylated polyurethane, and it was also confirmed by the reactions of APTMS end capping and crosslinking. The gel content of SPUDs increased with the NCO/OH ratio, and all the prepared samples were amorphous in nature. The thermal stability of SPUDs was higher than that of pure and amine-chain-extended polyurethane dispersions. A decrease in the water and solvent swelling and an increase in the water contact angle confirmed the effective crosslinking of the silanol groups of the silylated polyurethane. Storage-stability results showed that all the prepared dispersions were stable for more than 3 months.",
author = "S. Subramani and Lee, {J. M.} and Cheong, {I. W.} and Kim, {J. H.}",
year = "2005",
month = "10",
day = "15",
doi = "10.1002/app.22071",
language = "English",
volume = "98",
pages = "620--631",
journal = "Journal of Applied Polymer Science",
issn = "0021-8995",
publisher = "John Wiley and Sons Inc.",
number = "2",

}

Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions. / Subramani, S.; Lee, J. M.; Cheong, I. W.; Kim, J. H.

In: Journal of Applied Polymer Science, Vol. 98, No. 2, 15.10.2005, p. 620-631.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions

AU - Subramani, S.

AU - Lee, J. M.

AU - Cheong, I. W.

AU - Kim, J. H.

PY - 2005/10/15

Y1 - 2005/10/15

N2 - A series of water-based polyurethane dispersions were synthesized by the polyaddition of isophorone diisocyanate, poly(oxytetramethylene) glycol, and dimethylol propionic acid as prepolymers, which were end-capped and crosslinked with 3-aminopropyl trimethoxysilane (APTMS) to produce silylated polyurethane dispersions (SPUDs). The dispersion was performed before the end-capping reaction to avoid gelation. Pure and tetraethylene pentamine chain-extended polyurethanes were also synthesized. The length of the soft segment and the ratio of NCO to OH were varied. The properties of these prepolymer dispersions were investigated with Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, tensile and surface contact-angle measurements, nanoindentation testing, gel content, water and xylene swellability, and storage stability. An increase in the modulus and hardness and a decrease in the tensile properties of SPUDs were noticed in comparison with a pure polyurethane dispersion. This may have been due to the smaller number of hydrogen bonds and the brittleness of the film by the formation of crosslinked siloxane networks through the hydrolysis-condensation reaction of methoxysilane groups of silylated polyurethane, and it was also confirmed by the reactions of APTMS end capping and crosslinking. The gel content of SPUDs increased with the NCO/OH ratio, and all the prepared samples were amorphous in nature. The thermal stability of SPUDs was higher than that of pure and amine-chain-extended polyurethane dispersions. A decrease in the water and solvent swelling and an increase in the water contact angle confirmed the effective crosslinking of the silanol groups of the silylated polyurethane. Storage-stability results showed that all the prepared dispersions were stable for more than 3 months.

AB - A series of water-based polyurethane dispersions were synthesized by the polyaddition of isophorone diisocyanate, poly(oxytetramethylene) glycol, and dimethylol propionic acid as prepolymers, which were end-capped and crosslinked with 3-aminopropyl trimethoxysilane (APTMS) to produce silylated polyurethane dispersions (SPUDs). The dispersion was performed before the end-capping reaction to avoid gelation. Pure and tetraethylene pentamine chain-extended polyurethanes were also synthesized. The length of the soft segment and the ratio of NCO to OH were varied. The properties of these prepolymer dispersions were investigated with Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, tensile and surface contact-angle measurements, nanoindentation testing, gel content, water and xylene swellability, and storage stability. An increase in the modulus and hardness and a decrease in the tensile properties of SPUDs were noticed in comparison with a pure polyurethane dispersion. This may have been due to the smaller number of hydrogen bonds and the brittleness of the film by the formation of crosslinked siloxane networks through the hydrolysis-condensation reaction of methoxysilane groups of silylated polyurethane, and it was also confirmed by the reactions of APTMS end capping and crosslinking. The gel content of SPUDs increased with the NCO/OH ratio, and all the prepared samples were amorphous in nature. The thermal stability of SPUDs was higher than that of pure and amine-chain-extended polyurethane dispersions. A decrease in the water and solvent swelling and an increase in the water contact angle confirmed the effective crosslinking of the silanol groups of the silylated polyurethane. Storage-stability results showed that all the prepared dispersions were stable for more than 3 months.

UR - http://www.scopus.com/inward/record.url?scp=27744472969&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=27744472969&partnerID=8YFLogxK

U2 - 10.1002/app.22071

DO - 10.1002/app.22071

M3 - Article

AN - SCOPUS:27744472969

VL - 98

SP - 620

EP - 631

JO - Journal of Applied Polymer Science

JF - Journal of Applied Polymer Science

SN - 0021-8995

IS - 2

ER -