Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersions

Sankaraiah Subramani, Jung Min Lee, Jun Young Lee, Jung-Hyun Kim

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non-yellowing) silylated polyurethane (SPU) films. The films were characterized by FT-IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA-PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3-(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly-(oxytetramethylene)glycol (PTMG)-2000 and isophorone diisocyanate (or) toluene-2,4-diisocyanate have excellent properties compared to SPUs prepared using PTMG-1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end-group modification to produce SPUs with a wide range of physical properties.

Original languageEnglish
Pages (from-to)601-609
Number of pages9
JournalPolymers for Advanced Technologies
Volume18
Issue number8
DOIs
Publication statusPublished - 2007 Aug 1

Fingerprint

Polyurethanes
Dispersions
ethylenediamine
Crosslinking
Temperature
Contact angle
Water
Gels
Toluene 2,4-Diisocyanate
Silanes
Xylenes
Glycols
Nanoindentation
Xylene
Angle measurement
trimethoxysilane
Tensile properties
Urea
Organic solvents
Water content

All Science Journal Classification (ASJC) codes

  • Polymers and Plastics

Cite this

@article{8ecda72405f646039c37f5a52209f2a0,
title = "Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersions",
abstract = "The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non-yellowing) silylated polyurethane (SPU) films. The films were characterized by FT-IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA-PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3-(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly-(oxytetramethylene)glycol (PTMG)-2000 and isophorone diisocyanate (or) toluene-2,4-diisocyanate have excellent properties compared to SPUs prepared using PTMG-1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end-group modification to produce SPUs with a wide range of physical properties.",
author = "Sankaraiah Subramani and Lee, {Jung Min} and Lee, {Jun Young} and Jung-Hyun Kim",
year = "2007",
month = "8",
day = "1",
doi = "10.1002/pat.860",
language = "English",
volume = "18",
pages = "601--609",
journal = "Polymers for Advanced Technologies",
issn = "1042-7147",
publisher = "John Wiley and Sons Ltd",
number = "8",

}

Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersions. / Subramani, Sankaraiah; Lee, Jung Min; Lee, Jun Young; Kim, Jung-Hyun.

In: Polymers for Advanced Technologies, Vol. 18, No. 8, 01.08.2007, p. 601-609.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Synthesis and properties of room temperature curable trimethoxysilane-terminated polyurethane and their dispersions

AU - Subramani, Sankaraiah

AU - Lee, Jung Min

AU - Lee, Jun Young

AU - Kim, Jung-Hyun

PY - 2007/8/1

Y1 - 2007/8/1

N2 - The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non-yellowing) silylated polyurethane (SPU) films. The films were characterized by FT-IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA-PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3-(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly-(oxytetramethylene)glycol (PTMG)-2000 and isophorone diisocyanate (or) toluene-2,4-diisocyanate have excellent properties compared to SPUs prepared using PTMG-1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end-group modification to produce SPUs with a wide range of physical properties.

AB - The purpose of this research is to study the synthesis and characterization of stable aqueous dispersions of externally chain extended polyurethane/urea compositions terminated by hydrolyzable or hydrolyzed trialkoxysilane groups incorporated through secondary amino groups. These dispersions with excellent storage stability are substantially free from organic solvents which cure to water and solvent resistant, tough, scratch resistant, preferably light stable (non-yellowing) silylated polyurethane (SPU) films. The films were characterized by FT-IR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile strength and water contact angle measurements, nanoindentation, gel content, water and xylene swellability tests. The properties of the films were discussed and correlated in detail by changing length of soft segment, diisocyanates, NCO/OH ratio and chain extender, ethylenediamine (EDA). From the results, it was found that the particle size and viscosity are lower whereas the gel content and thermal stability are higher for SPUs. Modulus, hardness and tensile properties of SPU films are superior compared to EDA-PU film. Higher water contact angle and residual weight percentage of SPU films confirm silylation of PU by [3-(phenylamino)propyl]trimethoxysilane (PAPTMS). Increase in NCO/OH ratios consumes more quantity of PAPTMS which makes PU with superior mechanical properties. Higher PAPTMS content in SPU results in effective crosslinking of the functional silanol groups formed by hydrolysis reaction of trimethoxysilane groups. Overall, SPUs synthesized at 1.4 NCO/OH ratio using Poly-(oxytetramethylene)glycol (PTMG)-2000 and isophorone diisocyanate (or) toluene-2,4-diisocyanate have excellent properties compared to SPUs prepared using PTMG-1000 and at 1.2 and 1.6 NCO/OH ratios. SPUs prepared at 1.6 NCO/OH ratio are brittle due to higher crosslinking density. In addition, the crosslinking density of the films can be modified through silane end-group modification to produce SPUs with a wide range of physical properties.

UR - http://www.scopus.com/inward/record.url?scp=34547986054&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547986054&partnerID=8YFLogxK

U2 - 10.1002/pat.860

DO - 10.1002/pat.860

M3 - Article

AN - SCOPUS:34547986054

VL - 18

SP - 601

EP - 609

JO - Polymers for Advanced Technologies

JF - Polymers for Advanced Technologies

SN - 1042-7147

IS - 8

ER -