Abstract
Alcohol-soluble comb copolymers were synthesized from rubbery poly(oxyethylene methacrylate) (POEM) and glassy polyacrylamide (PAcAm) via economical and facile free-radical polymerization. The synthesis of comb copolymers was confirmed by Fourier-transform infrared and proton nuclear magnetic resonance spectroscopic studies. The bicontinuous microphase-separated morphology and amorphous structure of comb copolymers were confirmed by wide-angle X-ray scattering, differential scanning calorimetry, and transmission electron microscopy. With increasing POEM content in the comb copolymer, both CO2 permeability and CO2/N2 selectivity gradually increased. A mechanically strong free-standing membrane was obtained at a POEM:PAcAm ratio of 70:30 wt%, in which the CO2 permeability and CO2/N2 selectivity reached 261.7 Barrer (1 Barrer = 10−10 cm3 (STP) cm cm−2 s−1 cmHg−1) and 44, respectively. These values are greater than those of commercially available Pebax and among the highest separation performances reported previously for alcohol-soluble, all-polymeric membranes without porous additives. The high performances were attributed to an effective CO2-philic pathway for the ethylene oxide group in the rubbery POEM segments and prevention of the N2 permeability by glassy PAcAm chains.
Original language | English |
---|---|
Article number | 177 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Polymers |
Volume | 13 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2021 Jan 2 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation (NRF) of South Korea funded by the Ministry of Science and ICT, Republic of Korea (NRF-2017R1D1A1B06028030, NRF-2020K1A4A7A02095371).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Polymers and Plastics