Abstract
MgO–CeO2 composites with enhanced sorption rate for CO2 capture were prepared via a sol-gel combustion method. The effects of water, cerium, and citric acid on the sorption performance were investigated systematically to elucidate the role of components. The cerium content substantially lowered the decomposition temperature by 100 °C and the amount of citric acid affected the propagation rate. Controlled combustion led to different pore structures and CO2 capture performances, and controlling the amount of citric acid was the most effective way to improve the textural properties and performances. The developed MgO–CeO2 composites consist of nanoparticles covered with a flat plate, and a small amount of residual carbon from citric acid was also observed in the samples. The optimal MgO–CeO2 composite using the Ce/Mg molar ratio of 0.05 exhibited a high surface area (333 m2/g) and enhanced CO2 capture capacity (10.4 wt%) at 30 °C. All the composites showed a fast sorption rate that reached approximately 70% of the capacity within 3 min. The analysis of the CO2-TPD profiles and XPS spectra indicated that even a relatively small amount of carbonaceous residues after calcinations contributed to retaining more amounts of strong basic sites and consequently resulted in the fast sorption rate. In the cyclic test, the sorption capacity is reasonably stable from the 2nd cycle onwards. The simple preparation via cerium doping and the citric acid-assisted sol-gel combustion can contribute to the development of sorbents for post-combustion as well as pre-combustion CO2 capture.
Original language | English |
---|---|
Article number | 109587 |
Journal | Microporous and Mesoporous Materials |
Volume | 288 |
DOIs | |
Publication status | Published - 2019 Nov 1 |
Bibliographical note
Funding Information:This research was supported by the National Strategic Project-Carbon Upcycling of the National Research Foundation of Korea funded by the Ministry of Science and ICT(MSIT) , the Ministry of Environment(ME) and the Ministry of Trade, Industry and Energy ( 2017M3D8A2084029 ).
Funding Information:
This research was supported by the National Strategic Project-Carbon Upcycling of the National Research Foundation of Korea funded by the Ministry of Science and ICT(MSIT), the Ministry of Environment(ME) and the Ministry of Trade, Industry and Energy (2017M3D8A2084029).
Publisher Copyright:
© 2019 Elsevier Inc.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials