TY - JOUR
T1 - Synthesis of new visible light active photocatalysts of Ba(In 1/3Pb1/3M′1/3)O3 (M′ = Nb, Ta)
T2 - A band gap engineering strategy based on electronegativity of a metal component
AU - Hur, Su Gil
AU - Kim, Tae Woo
AU - Hwang, Seong Ju
AU - Park, Hyunwoong
AU - Choi, Wonyong
AU - Kim, Sun Jin
AU - Choy, Jin Ho
PY - 2005/8/11
Y1 - 2005/8/11
N2 - We have synthesized new, efficient, visible light active photocatalysts through the incorporation of highly electronegative non-transition metal Pb or Sn ions into the perovskite lattice of Ba(In1/3M 1/3M′1/3)O3 (M = Sn, Pb; M′ = Nb, Ta). X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that tetravalent Pb or Sn ions exist in the B-site of the perovskite lattice, along with In and Nb/Ta ions. According to diffuse UV-vis spectroscopic analysis, the Pb-containing quaternary metal oxides Ba(In1/3Pb1/3M′1/3)O3 possess a much narrower band gap (Eg ∼ 1.48-1.50 eV) when compared to the ternary oxides Ba(In1/2M′1/2)O 3 (Eg ∼ 2.97-3.30 eV) and the Sn-containing Ba(In 1/3Sn1/3M′1/3)O3 derivatives (Eg ∼ 2.85-3.00 eV). Such a variation of band gap energy upon the substitution is attributable to the broadening of the conduction band caused by the dissimilar electronegativities of the B-site cations. In contrast to the ternary or the Sn-substituted quaternary compounds showing photocatalytic activity under UV-vis irradiation, the Ba(In1/3Pb 1/3M′1/3)O3 compounds induce an efficient photodegradation of 4-chlorophenol under visible light irradiation (λ > 420 nm). The present results highlight that the substitution of electronegative non-transition metal cations can provide a very powerful way of developing efficient visible light harvesting photocatalysts through tuning of the band structure of a semiconductive metal oxide.
AB - We have synthesized new, efficient, visible light active photocatalysts through the incorporation of highly electronegative non-transition metal Pb or Sn ions into the perovskite lattice of Ba(In1/3M 1/3M′1/3)O3 (M = Sn, Pb; M′ = Nb, Ta). X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that tetravalent Pb or Sn ions exist in the B-site of the perovskite lattice, along with In and Nb/Ta ions. According to diffuse UV-vis spectroscopic analysis, the Pb-containing quaternary metal oxides Ba(In1/3Pb1/3M′1/3)O3 possess a much narrower band gap (Eg ∼ 1.48-1.50 eV) when compared to the ternary oxides Ba(In1/2M′1/2)O 3 (Eg ∼ 2.97-3.30 eV) and the Sn-containing Ba(In 1/3Sn1/3M′1/3)O3 derivatives (Eg ∼ 2.85-3.00 eV). Such a variation of band gap energy upon the substitution is attributable to the broadening of the conduction band caused by the dissimilar electronegativities of the B-site cations. In contrast to the ternary or the Sn-substituted quaternary compounds showing photocatalytic activity under UV-vis irradiation, the Ba(In1/3Pb 1/3M′1/3)O3 compounds induce an efficient photodegradation of 4-chlorophenol under visible light irradiation (λ > 420 nm). The present results highlight that the substitution of electronegative non-transition metal cations can provide a very powerful way of developing efficient visible light harvesting photocatalysts through tuning of the band structure of a semiconductive metal oxide.
UR - http://www.scopus.com/inward/record.url?scp=23844467517&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=23844467517&partnerID=8YFLogxK
U2 - 10.1021/jp051752o
DO - 10.1021/jp051752o
M3 - Article
C2 - 16852899
AN - SCOPUS:23844467517
SN - 1520-6106
VL - 109
SP - 15001
EP - 15007
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 31
ER -