Synthesis of Ultra-Small Palladium Nanoparticles Deposited on CdS Nanorods by Pulsed Laser Ablation in Liquid: Role of Metal Nanocrystal Size in the Photocatalytic Hydrogen Production

Hanbit Park, D. Amaranatha Reddy, Yujin Kim, Seunghee Lee, Rory Ma, Tae Kyu Kim

Research output: Contribution to journalArticle

24 Citations (Scopus)


It is imperative to suppress the rate of recombination of photogenerated carriers to improve the semiconductor-catalyzed solar-driven production of hydrogen. To this end, photocatalysts comprising active sunlight-harvesting photo-absorbers and stable metal co-catalysts have attracted significant attention. However, the size, clean surface, and highly dispersed nature of the metal co-catalysts are crucial factors affecting catalyst performance and reaction rate. Nevertheless, most of the available metal nanocrystals have been synthesized by complex procedures using harmful organic templates and stabilizers, affording high-purity compounds with difficulty and high cost. To overcome these problems, in this study, the pulsed laser ablation in liquid approach was utilized to generate palladium and bimetallic palladium–platinum nanoparticles with an average size and distribution by adjusting the laser wavelength and fluence. A high rate of evolution of hydrogen of 130.33 mmol g−1 h−1 was obtained by using the optimized CdS-PdPt catalyst under simulated sunlight irradiation. This value is 51.31 times greater than that observed for bare CdS nanostructures. Furthermore, the amount of hydrogen evolved was significantly better than that obtained by using several other noble-metal co-catalysts deposited on CdS. This proposed strategy is thought to open new avenues for the design of advanced photocatalytic materials for efficient solar-driven production of hydrogen.

Original languageEnglish
Pages (from-to)13112-13119
Number of pages8
JournalChemistry - A European Journal
Issue number53
Publication statusPublished - 2017 Sep 21


All Science Journal Classification (ASJC) codes

  • Catalysis
  • Organic Chemistry

Cite this