TY - JOUR
T1 - Template requirement and initiation site selection by hepatitis C virus polymerase on a minimal viral RNA template
AU - Oh, Jong Won
AU - Sheu, Gwo Tarng
AU - Lai, Michael M.C.
PY - 2000/6/9
Y1 - 2000/6/9
N2 - RNA-dependent RNA polymerase, NS5B protein, catalyzes replication of viral genomic RNA, which presumably initiates from the 3'-end. We have previously shown that NS5B can utilize the 3'-end 98-nucleotide (nt) X region of the hepatitis C virus (HCV) genome as a minimal authentic template. In this study, we used this RNA to characterize the mechanism of RNA synthesis by the recombinant NS5B. We first showed that NS5B formed a complex with the 3'-end of HCV RNA by binding to both the poly(U-U/C)-rich and X regions of the 3'-untranslated region as well as part of the NS5B-coding sequences. Within the X region, NS5B bound stem II and the single-stranded region connecting stem-loops I and II. Truncation of 40 nt or more from the 3'-end of the X region abolished its template activity, whereas X RNA lacking 35 nt or less from the 3'-end retained template activity, consistent with the NS5B- binding site mapped. Furthermore, NS5B initiated RNA synthesis from a specific site within the single-stranded loop I. All of the RNA templates that have a double-stranded stem at the 3'-end had the same RNA initiation site. However, the addition of single-stranded nucleotides to the 3'-end of X RNA or removal of double-stranded structure in stem I generated RNA products of template size. These results indicate that HCV NS5B initiates RNA synthesis from a single-stranded region closest to the 3'-end of the X region. These results have implications for the mechanism of HCV RNA replication and the nature of HCV RNA templates in the infected cells.
AB - RNA-dependent RNA polymerase, NS5B protein, catalyzes replication of viral genomic RNA, which presumably initiates from the 3'-end. We have previously shown that NS5B can utilize the 3'-end 98-nucleotide (nt) X region of the hepatitis C virus (HCV) genome as a minimal authentic template. In this study, we used this RNA to characterize the mechanism of RNA synthesis by the recombinant NS5B. We first showed that NS5B formed a complex with the 3'-end of HCV RNA by binding to both the poly(U-U/C)-rich and X regions of the 3'-untranslated region as well as part of the NS5B-coding sequences. Within the X region, NS5B bound stem II and the single-stranded region connecting stem-loops I and II. Truncation of 40 nt or more from the 3'-end of the X region abolished its template activity, whereas X RNA lacking 35 nt or less from the 3'-end retained template activity, consistent with the NS5B- binding site mapped. Furthermore, NS5B initiated RNA synthesis from a specific site within the single-stranded loop I. All of the RNA templates that have a double-stranded stem at the 3'-end had the same RNA initiation site. However, the addition of single-stranded nucleotides to the 3'-end of X RNA or removal of double-stranded structure in stem I generated RNA products of template size. These results indicate that HCV NS5B initiates RNA synthesis from a single-stranded region closest to the 3'-end of the X region. These results have implications for the mechanism of HCV RNA replication and the nature of HCV RNA templates in the infected cells.
UR - http://www.scopus.com/inward/record.url?scp=0034625351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034625351&partnerID=8YFLogxK
U2 - 10.1074/jbc.M908781199
DO - 10.1074/jbc.M908781199
M3 - Article
C2 - 10749880
AN - SCOPUS:0034625351
VL - 275
SP - 17710
EP - 17717
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 23
ER -