TY - GEN
T1 - Temporal and spectral analysis of laser induced plasma in the ablation process of flexible printed circuit board
AU - Ryoo, Hoon C.
AU - Kim, Seok
AU - Hahn, Jae W.
PY - 2008
Y1 - 2008
N2 - Flexible printed circuit board (FPCB), consisting of copper sheets laminated onto non conductive film substrates with multiple structures, are core elements in electronics with their flexibility and capability of high density 3 dimensional wiring characteristics. In laser applied FPCB processing, a better understanding of the ablation mechanism leads to precision control of the depth processing especially by monitoring of the material transition layer. For this purpose, here we investigate the temporal and spectral behavior of the plasma plum generated on the single sided structure of FPCB using the technique of laser induced breakdown spectroscopy (LIBS). Using KrF excimer laser, the characteristic spectral emission lines of C2 swan band at the wavelength of 516.5 nm and neutral copper at the wavelength range from 510 nm to 522 nm are acquired under ambient pressure in the ablation process of polyimide film and copper coated layer respectively. From a time delay from 50 ns to 4.05 μs from the beginning of the laser pulse, the temporal profiles of the spectral intensity are obtained in steps of 200 ns, which have a tendency of exponential decrease on both C2 and neutral copper. In particular, we concentrate our attention on the temporal intensity behavior of the Bremsstrahlung continuum emission that decides the proper set of detection time window, by which the monitoring sensitivity of LIBS is determined. Finally, using the information of the temporal analysis for each molecular, atomic, and continuum emission, the transition layer between polyimide and copper film is distinguished by their characteristic peak information.
AB - Flexible printed circuit board (FPCB), consisting of copper sheets laminated onto non conductive film substrates with multiple structures, are core elements in electronics with their flexibility and capability of high density 3 dimensional wiring characteristics. In laser applied FPCB processing, a better understanding of the ablation mechanism leads to precision control of the depth processing especially by monitoring of the material transition layer. For this purpose, here we investigate the temporal and spectral behavior of the plasma plum generated on the single sided structure of FPCB using the technique of laser induced breakdown spectroscopy (LIBS). Using KrF excimer laser, the characteristic spectral emission lines of C2 swan band at the wavelength of 516.5 nm and neutral copper at the wavelength range from 510 nm to 522 nm are acquired under ambient pressure in the ablation process of polyimide film and copper coated layer respectively. From a time delay from 50 ns to 4.05 μs from the beginning of the laser pulse, the temporal profiles of the spectral intensity are obtained in steps of 200 ns, which have a tendency of exponential decrease on both C2 and neutral copper. In particular, we concentrate our attention on the temporal intensity behavior of the Bremsstrahlung continuum emission that decides the proper set of detection time window, by which the monitoring sensitivity of LIBS is determined. Finally, using the information of the temporal analysis for each molecular, atomic, and continuum emission, the transition layer between polyimide and copper film is distinguished by their characteristic peak information.
UR - http://www.scopus.com/inward/record.url?scp=44949214731&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949214731&partnerID=8YFLogxK
U2 - 10.1117/12.762025
DO - 10.1117/12.762025
M3 - Conference contribution
AN - SCOPUS:44949214731
SN - 9780819470546
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Photon Processing in Microelectronics and Photonics VII
T2 - Photon Processing in Microelectronics and Photonics VII
Y2 - 21 January 2008 through 24 January 2008
ER -